
Chapter IV - Android Runtime Services

Note: This file is a sample chapter from the full book - "Android Internals: A confectioner's
cookbook" - which can be found on http://NewAndroidBook.com/. The chapter was made
available for free as a preview of the book (think of it like Amazon's "Look Inside" :-). I
encourage you to check out Technologeeks.com Android Internals training, which builds
on the book and expands it further with Instructor Led Training.

You can also preorder the book by emailing p r eorder @ The Book's domain.

Note some links (to other chapters in the book) will not work in this file (since it is partial),
but external links will. Feedback, questions and requests are always welcome.

Android has quite a few daemons running in the background for providing its miscellaneous
housekeeping and operational functions. The services are mostly strewn in /init.rc without much
ordering, save the service class. The "core" services start first, followed by the "main" ones. The rc
also defines a "late_start" class, for services which depend on the /data partition, though no default
services belong to it. In this section, we adopt the service class division, but - since most services
are in "main" - further subcategorize by function.

We begin with a discussion of init, which is the very first process to launch (PID 1), as thus
serves as the progenitor of all user mode processes. The Android init is different than that of Linux,
with the most important differences being in its support of System Properties and using a particular
set of rc files. Following the explanation of those two features, we piece together the flow of init: its
Initialization and Run-Loop.

As it so happens, init also fills additional roles - assuming the guise of ueventd and
watchdogd, two important core services which are also implemented by init, loaded through a
symbolic link. The discussion continues to cover the other Core Services - adbd, the servicemanager
and KitKat's healthd, as well as new core services added in L: lmkd and logd.

All other services are generally classified into the "main" category, so a subcategorization by
Network Services (netd, mdnsd, mtpd and rild), and Graphics and Media Services (surfaceflinger,
bootanimation, mediaserver and drmserver) follows. The remaining services are hard to group, so
they are placed into the "Other Services" category, which includes installd, keystore, debuggerd,
sdcard and - last, but far from least - Zygote.

http://newandroidbook.com/
http://technologeeks.com/course.jl?course=Android%20Internals
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#init
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#systemproperties
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#rcfiles
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#alltogether
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#guises
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#ueventd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#watchdogd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#CoreServices
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#adbd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#servicemanager
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#healthd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#lmkd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#logd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#NetworkServices
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#netd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#mdnsd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#mtpd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#rild
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#GraphicsServices
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#surfaceflinger
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#bootanimation
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#mediaserver
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#drmserver
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#OtherServices
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#installd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#keystore
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#debuggerd
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#sdcard
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#zygote

healthd

The "health daemon" is meant to service general "device health" tasks periodically,
though at present the only tasks are battery related (this will likely change in future releases). The
daemon registers itself as the BatteryPropertiesRegistrar service (batterypropreg or
batteryproperties in L). As the Registrar, healthd provides the framework services (e.g.
BatteryStatsService) with up-to-date battery statistics, which it obtains from sysfs.

Like most daemons, healthd sets up an initial configration, and then enters a run loop. The
detailed flow is shown in Figure 4-hdsf:

Figure 4-hdsf: The flow of healthd

Process commandline Only supports -n: (no publish with servicemanager)

healthd_board_init Loads configuration (sysfs file names for battery stats)

wakealarm_init Sets timer for periodic chores

uevent_init Opens a netlink multicast socket for uevents

binder_init Set up binder fd

Create/Init BatteryMonitor Construct and then initialize a BatteryMonitor object

epoll_wait Set up three descriptors in epoll, and wait for events,
or timeout after periodic chores interval

handle eventsperiodic_chores

Healthd main loop blocks on the Linux epoll(2) API to multiplex read operations on three
descriptors, and registers actions for each, as shown in the following table:

Table 4-hdfdt: The file descriptors held by healthd and their purpose

Descriptor Type Purpose

wakealarm_fd TimerFD Timer set to fire every periodic_chores_interval seconds. Upon
wakeup, healthd runs periodic_chores.

event_fd Netlink
Reads kernel notification events. healthd only concerns itself with those
of the power subsystem (SUBSYSTEM=POWER). These events include
battery and charger notifications, and healthd runs battery_update().

binder_fd /dev/binder Listener updates by framework clients (when acting as batterypropreg)

The first descriptor polled is the wakealarm_fd, which healthd uses for its periodic chores.
Two interval types are used: fast (1 minutem, when on AC power), and slow (10 minutes, on
battery)*. The only chore presently defined is battery_update(), which updates battery
statistics in healthd's role as the BatteryPropertiesRegistrar. This is also called when events
from the POWER subsystem are received over netlink from event_fd: healthd makes no attempt
to parse the events, and merely refereshes the battery statistics. The latter mode is required in
order for healthd to respond to events such as charger [dis]connection, or other power
management alerts. Finally, the binder_fd is used to interact with the framework listeners
(primarily, the BatteryStatsService), as described in the next chapter.

* - Interestingly enough, in many Android releases the timerfd_create call returns -EINVAL (Invalid argument), not
creating wakealarm_fd and thus defaulting to polling on the event_fd as an event source alone.

file:///Users/morpheus/Documents/Android/Book/Services-II.html#BatteryStats

 Experiment: Observing healthd

Using the powerful strace(1) utility you can watch healthd behind the scenes: By
attaching to its process ID (as root) and calling on the ptrace(2) API, strace(1) can get
notifications of system calls. Because anything meaningful a process does goes through a system
call, this will provide a detailed trace of the activity, and reveal the names of the sysfs files
healthd uses to obtain its statistics, as shown in the following annotated output:

Output 4-hdstr: Using strace(1) on healthd

Note the sysfs psuedo files (/sys/class/power_supply/*) are standard - in practice they are
symbolic links to the specific platform device nodes, which change between devices.

root@htc_m8wl:/ # ls -l /proc/$healthd_pid/fd | cut -c'1-10,55-'
lrwx------ 0 -> /dev/null
lrwx------ 1 -> /dev/null
lrwx------ 2 -> /dev/null
l-wx------ 3 -> /dev/__kmsg__ (deleted) # Output: Log to kernel
lrwx------ 4 -> socket:[6951] # event_fd (Netlink socket)
lrwx------ 5 -> /dev/binder # binder_fd
lrwx------ 6 -> anon_inode:[eventpoll] # epollfd
l-wx------ 7 -> /dev/cpuctl/apps/tasks # fg_cgroup_fd (libcutils)
l-wx------ 8 -> /dev/cpuctl/apps/bg_non_interactive/tasks # bg_cgroup_fd (libcutils)
lr-x------ 9 -> /dev/__properties__ # r/o property fd
root@htc_m8wl:/ # strace -p $healthd_pid
Process $healthd_pid attached - interrupt to quit
healthd patiently polling (0xffffffff = indefinitely) until an fd signals an event
epoll_wait(0x6, 0xbebb5898, 0x2, 0xffffffff) = 1
Netlink msg received on fd 4 (event_fd) - indicating core state change (going offline)
recvmsg(4, {msg_name(12)={sa_family=AF_NETLINK, pid=0, groups=00000001},
msg_iov(1)=[{"offline@/devices/system/cpu/cpu1"..., 1024}], msg_controllen=24,
healthd's not interested, so it goes back to polling
epoll_wait(0x6, 0xbebb5898, 0x2, 0xffffffff) = 1
message indicating change in battery status:
recvmsg(4, {msg_name(12)={sa_family=AF_NETLINK, pid=0, groups=00000001},
msg_iov(1)=[{"change@/devices/platform/htc_bat"..., 1024}], msg_controllen=24,
{cmsg_len=24, cmsg_level=SOL_SOCKET, cmsg_type=SCM_CREDENTIALS{pid=0, uid=0, gid=0}},
msg_flags=0}, 0) = 488

healthd goes into a flurry of statistics collection, opening and closing files:
#
open("/sys/class/power_supply/battery/present", O_RDONLY) = 10 # Is battery present?
read(10, "1\n", 16) = 2 # Yes (1)
close(10) = 0
open("/sys/class/power_supply/battery/capacity", O_RDONLY) = 10 # What is its capacity?
read(10, "96\n", 128) = 3 # 96%
close(10) = 0
open("/sys/class/power_supply/battery/batt_vol", O_RDONLY) = 10 # Voltage?
read(10, "4303\n", 128) = 5
close(10) = 0
open("/sys/class/power_supply/battery/batt_temp", O_RDONLY) = 10 # Temperature?
read(10, "265\n", 128) = 4
close(10) = 0
open("/sys/class/power_supply/battery/status", O_RDONLY) = 10 # Charge status?
read(10, "Charging\n", 128) = 9 # Charging
close(10) = 0
open("/sys/class/power_supply/battery/health", O_RDONLY) = 10 # Battery Health
read(10, "Good\n", 128) = 5
close(10) = 0
open("/sys/class/power_supply/battery/technology", O_RDONLY) = 10 # Battery Type
read(10, "Li-poly\n", 128) = 8
close(10) = 0
open("/sys/class/power_supply/ac/online", O_RDONLY) = 10 # AC is not connected
read(10, "0\n", 128) = 2
close(10) = 0
open("/sys/class/power_supply/usb/online", O_RDONLY) = 10 # USB is connected
read(10, "1\n", 128) = 2
close(10) = 0
open("/sys/class/power_supply/usb/type", O_RDONLY) = 10
read(10, "USB\n", 128) = 4
close(10) = 0
open("/sys/class/power_supply/wireless/online", O_RDONLY) = 10 # Alas, no wireless charging
read(10, "0\n", 128) = 2 # for the M8
close(10) = 0
write(3, "<6>healthd: battery l=96 v=4 t=2".., 51) = 51 # Report to kernel log
ioctl(5, BINDER_WRITE_READ, 0xbebb5070) = 0 # Report to client listeners
epoll_wait(0x6, 0xbebb5898, 0x2, 0xffffffff) = .. # Back to polling

 Experiment: Observing healthd (cont.)

As an improvement on the above, you might want to send the strace into the background
(by using &) and then disconnect and reconnect the USB cable. You will then see the netlink
notification for battery change, followed by a change in /sys/class/power_supply/usb/online (from 1
to 0 on disconnect, or vice versa on connect).

As of Android L, healthd supports dumpsys. You can actually take the Android L binary
(from the Google Nexus 5 or Emulator) and copy it to a real device, as shown in this output, from
the author's HTC One M8:

If you use strace to watch behind the scenes of dumpsys, you'll see the following output
(file descriptors are different here, so they've been symbolically replaced)

This example, aside from showing the inner workings of healthd on L, also demonstrates
an important part of Android: IPC over binder. In the above, you can see how a file descriptor
has been passed from the calling process (dumpsys) to healthd. Binder internals are a
complicated discussion in their own right, and are left for Chapter 20.

Though merely a speculation, it is likely that healthd will be augmented and play an
increasingly larger role in Android, possibly starting with L. A hint as to its importance can be found
in the fact that, aside from it being critical, it is also one of the few daemons that have made it into
the root file system (it's in /sbin, and not /system/bin like most others).

#
Before: Only KK healthd - note old service name (batterypropreg)
#
root@htc_m8wl:/ # service list | grep batteryprop
91 batterypropreg: [android.os.IBatteryPropertiesRegistrar]
root@htc_m8wl:/ # /data/local/tmp/healthd.L & # Run healthd from L
[1] 7287
#
After: new service name (batteryproperties) added. Name is different, so no conflict

root@htc_m8wl:/ # service list | grep batteryprop
0 batteryproperties: [android.os.IBatteryPropertiesRegistrar] # Note same interface
92 batterypropreg: [android.os.IBatteryPropertiesRegistrar]
root@htc_m8wl:/ # dumpsys batteryproperties # Calling dumpsys
ac: 0 usb: 1 wireless: 0
status: 5 health: 2 present: 1
level: 100 voltage: 4 temp: 273

epoll_pwait(epoll_fd, {{EPOLLIN, {u32=37597, u64=12884939485}}}, 2, -1, NULL) = 1
ioctl(binder_fd, BINDER_WRITE_READ, 0xbeab1748) = 0 # Incoming binder req
write(...tasks, healthd_pid, 4) = 4 # Make healthd foreground
..
write(new_fd, "ac: 0 usb: 1 wireless: 0\n", 25) = 25 # Write output
write(new_fd, "status: 5 health: 2 present: 1\n", 31) = 31 # to binder supplied
write(new_fd, "level: 100 voltage: 4 temp: 273\n", 32) = 32 # file descriptor.
fsync(new_fd) = -1 EINVAL (Invalid argument)
ioctl(binder_fd, BINDER_WRITE_READ, 0xbeab1600) = 0
close(new_fd) = 0
write(...tasks, healthd_pid, 4) = 4 # Make healthd background
..
ioctl(binder_fd, BINDER_WRITE_READ, 0xbeab1758) = 0

file:///Users/morpheus/Documents/Android/Book/IPC.html#binder

lmkd (Android L)

Android L uses another specialized core service class daemon called lmkd. It is defined
in the /init.rc as follows:

Listing 4-lmkdrc: The lmkd definition in /init.rc

service lmkd /system/bin/lmkd
 class core
 critical
 socket lmkd seqpacket 0660 system system

The lmkd provides an interface to the kernel's Low Memory Killer (LMK) mechanism, which
is an Androidism (i.e, a feature present in Android kernels, but not Linux ones). The LMK allows
Android finer control over the Linux Out-Of-Memory (OOM) mechanism, which automatically kills
tasks during memory pressure (Both OOM and LMK are described in detail in Chapter 19). Using the
/proc/pid/oom_score_adj files, the lmkd can adjust the OOM score of processes, making them more
or less "killable" - that is, prone to being killed when the system experiences memory pressure.

Like the other daemons discussed in this chapter, lmkd uses epoll_wait to simultaneously
wait on input from multiple sockets. The main socket - /dev/socket/lmkd - is the one created for it by
init, which is listening for connections. The only expected client is the ActivityManagerService
(discussed in the next chapter), which uses this socket to notify the daemon which process needs to
have its score adjusted. The lmkd also uses an output socket to log messages using logd, another
recent addition in L (described in the next section).

 Experiment: Observing lmkd

At the time of writing, the Android source code for L hasn't been made available (aside from
a very limited preview, which hasn't proven helpful). The binaries, however, are available for
both the Nexus 5 and the Android Emulator. It is therefore easy to reverse engineer them in a
level of detail sufficient for this work. Both static analysis (i.e. disassembly) and dynamic analysis
(runtime debugging) methods have been used. The method shown previously with healthd
(using strace) proves its efficacy once again. Note that lmkd cannot be backported into KitKat,
as it relies on the seqpacket sockets created for it by init to communicate with the frameworks.

Output 4-lmkds: Using strace to figure out lmkd

root@LEmulator:/# ls -l /proc/$lmkd_pid/fd | cut -c1-10,55-
lrwx------ 0 -> /dev/null
lrwx------ 1 -> /dev/null
lrwx------ 10 -> socket:[7360] # /dev/socket/lmkd (listening)
lrwx------ 2 -> /dev/null
lrwx------ 3 -> anon_inode:[eventpoll]
lrwx------ 4 -> socket:[7364] # /dev/socket/logdw (to logd)
lrwx------ 5 -> socket:[7653] # /dev/socket/lmkd (to ActivityManager)
lr-x------ 8 -> /dev/__properties__
root@LEmulator:/# strace -p $lmkd_pid
epoll_pwait(3, {{EPOLLIN, {u32=3069216345, u64=37428954713}}}, 2, -1, NULL, 8) = 1
read(5, "\0\0\0\1\0\0\4\5\0\0\0\v", 52) = 12
openat(AT_FDCWD, "/proc/1029/oom_score_adj", O_WRONLY) = 6
write(6, "647", 3) = 3
close(6) = 0

Looking at the above, you can see lmkd, like other daemon, blocks on the epoll_wait (FD
3), waiting for an event. The fd used for input - 5 - is the /dev/socket/lmkd, the other end of
which is connected to the Android ActivityManagerService. Messages are variable length
(up to 52 bytes), starting with a message type. Two message types have been observed:

Table 4-lmkdm: lmkd protocol messages

Type Parameters

0x00000000 Integer array of parameters which lmkd writes to
/sys/module/lowmemorykiller/parameters/minfree

0x00000001 PID to adjust (e.g. "\0\0\4\5" above for PID 1029),
and oom_score_adj to set for it

file:///Users/morpheus/Documents/Android/Book/Androidisms.html#lmk
file:///Users/morpheus/Documents/Android/Book/Services-II.html#ActivityManagerService
file:///Users/morpheus/Documents/Android/Book/ServicesPreview.html#logd

