

Application Backup & Restore

Just as humans grapple with sickness, Operating Systems face the risk of data corruption, or
outright loss. Backup and Restore is therefore an important functionality which an operating system
needs to provide. Applications need an ability to save and recover their configuration and data, and
power users require a similar ability to backup the entire device to a well known, bootable
configuration or a system checkpoint which can be rolled back to in case of calamity.

Indeed, as of API level 8, Android provides Applications with the BackupManagerService, a
framework service which provides both per-application backups, as well as full backups of all apps.
The internals of the framework service, including the Application Programming Interface it provides,
is covered (along with the rest of the framework services) in Volume II. The backup architecture is
quite elegant, delegating the responsibility of selecting which data is to be backed up to the
application: The application notifies the backup manager when data has changed, and the backup
manager adds the application to a queue.

Figure 3-4: A simplified view of the Android backup architecture

At some later time, when the BackupManagerService gets a request to actually perform a
backup, it creates a backup set, grouping together the one or more applications that were queued.
For each application, it invokes the onBackup() callback. The BackupService passes the
application a file descriptor in the callbacks, which the application is expected to use in order to
write out (or read from) the backup data. The descriptor provided is connected to a transport, to
which the application remains entirely oblivious. Data is written and read to the transport while
leaving its implementation opaque - Data can be backed up either locally, or to "the Cloud" (i.e.
Google's servers, or the device vendor's), but the choice of where to back up to remains at the
system (or vendor) level. The common transports are shown in table 3-7:

file:///Users/morpheus/Documents/Android/Book/@TODO

Table 3-7: Android Transports

Transport Backs up to

com.google.android.backup/.BackupTransportService Google's servers. Application needs a special
API key to use this service

com.android.server.enterprise/.EdmBackupTransport Enterprise backup, for managed devices

android/com.android.internal.backup.LocalTransport Local backup, to device

Command line tools

From the perspective of the power user, there's a far simpler interface to backup and restore, in
the form of two Dalvik upcall scripts, the bmgr and bu utilities. Both utilities require Java to facilitate
communication with the BackupManagerService, which they perform over Binder (as discussed
in Chapter 7). The bmgr utility is well documented, and explains its usage in detail when invoked
with no arguments. A summary of its arguments is shown in Table 3-8:

Table 3-8: Commands and arguments understood by the bmgr upcall script

Command Purpose
backup package Mark package to be backed up on next run

enable 0|1 Enable/disable the backup mechanism

enabled Report if backup mechanism is enabled or disabled

list transports List available transports, * specifying default (q.v. Table 3-7)

list sets List restore sets

transport transportName Set default transport

restore set [App] Restore from a specific set - all apps, or only App specified.

run Perform pending backups now

wipe transportName package Erase all backups of package from transportName

fullbackup package Perform a full backup of specified package

By contrast, the bu utility is entirely undocumented, and provides no user facing output,
preferring instead to use the Android logging system. expects only one argument - backup or
restore, but can handle quite a few switches when backing up. The switches expected by bu are
shown in Table 3-9, with the defaults in bold:

Table 3-9: Switches understood by bu backup
Switch Purpose
-[no]apk Save or omit application .apk files

-[no]obb Save or omit application opaque binary blobs (.obb) files

-[no]shared Save or omit shared resources

-[no]system Save or omit system applications in full backups

-[no]widgets Save or omit widgets (default: -nowidgets)

-[no]compress Compress backup

-all Backup everything (requires user confirmation)

If the switches seem vaguely familiar, it's because they are the same as those passed to adb
backup (though the latter does not advertise -nocompress as an option). Backups through adb
are just direct invocations of the bu upcall script, which helps explain why it's not as user-friendly as
bmgr.

file:///Users/morpheus/Documents/Android/Book/SystemServer.html#servicepattern
http://developer.android.com/tools/help/bmgr.html

Figure 3-5: The default Backup UI (LG G3 running KitKat)

Local backups

Using adb backup -all, triggers a full backup of all applications. Doing so causes the bu
utility to call the BackupManagerService's fullBackup() method, which pops up a
customizable UI notification to the user.

The default notification UI activity is
hardcoded to
com.android.backupconfirm, and shown
in Figure 3-5. Using a UI requires the device
to be unlocked, adding a measure of security
for users, by mitigating the chance a device
could be taken for a minute or two, backed
up and returned to the unwitting user.
Another measure of security offers the user a
chance to cancel the backup, as well as enter
a password.

If the user approves the backup
operation, a toast notification informs that the
backup started, and the current package
progress is displayed.

When backing up to a connected host, adb
connects the other end of the transport file
descriptor to a local file on the host, specified
by the -f switch, or simply the backup.ab
default. The backup file uses a proprietary
format, which differs slightly if the backup is
encrypted or not. The format's only
documentation is embedded in the source of
the BackupManagerService class, but this
provides comprehensive detail, as shown in
Listing 3-bufor:

Listing 3-bufor: The format of an Android backup file

// Write the global file header. All strings are UTF-8 encoded; lines end
// with a '\n' byte. Actual backup data begins immediately following the
// final '\n'.
//
// line 1: "ANDROID BACKUP"
// line 2: backup file format version, currently "2"
// line 3: compressed? "0" if not compressed, "1" if compressed.
// line 4: name of encryption algorithm [currently only "none" or "AES-256"]
//
// When line 4 is not "none", then additional header data follows:
//
// line 5: user password salt [hex]
// line 6: master key checksum salt [hex]
// line 7: number of PBKDF2 rounds to use (same for user & master) [decimal]
// line 8: IV of the user key [hex]
// line 9: master key blob [hex]
// IV of the master key, master key itself, master key checksum hash
//
// The master key checksum is the master key plus its checksum salt, run through
// 10k rounds of PBKDF2. This is used to verify that the user has supplied the
// correct password for decrypting the archive: the master key decrypted from
// the archive using the user-supplied password is also run through PBKDF2 in
// this way, and if the result does not match the checksum as stored in the
// archive, then we know that the user-supplied password does not match the
// archive's.

https://android.googlesource.com/platform/frameworks/base/+/master/services/backup/java/com/android/server/backup/BackupManagerService.java

Experiment: Examining Android Backups

The Android backup file header is easy to figure out using Listing 3-bufor, but its contents are
compressed by default. Using the semi-documented -nocompress, which is supported by the bu
upcall script but not readily advertised by adb, you can create an uncompressed backup:

Output 3-15: Creating and inspecting an uncompressed backup

The header is straightforward enough, but what of the actual backup contents? The first line
looks suspiciously like meta data. We therefore strip the header, and try our luck with file(1):

Output 3-16: Stripping the header from an Android archive

And thus we see that Android backups, internally, are nothing more than good ol' UN*X tar
archives. Using compression applies the Deflate algorithm after the tar.

If you do use encryption, the header size and complexity both increase. The following shows
the header of the same archive, when compressed and encrypted with "password":

Output 3-17: Examining an encrypted backup

morpheus@Forge (~) % adb backup -nocompress -all
UI is displayed on device...
Now unlock your device and confirm the backup operation.
morpheus@Forge (~) % ls -l backup.ab
-rw-r----- 1 morpheus staff 17158168 Jan 1 23:37 backup.ab
morpheus@Forge (~) % head -6 backup.ab
ANDROID BACKUP # MAGIC
3 # Version (3 = L)
0 # Compression (0 = False)
none # Encryption (none)
apps/android/_manifest000600 0175001750000000036240010767 0ustar001
android
..

The header was four lines long, so start as of line 5...
morpheus@Forge (~) % tail +5 backup.ab > a.ab
Attempt to auto identify the file..
morpheus@Forge (~) % file a.ab
a.ab: POSIX tar archive
Check file contents:
morpheus@Forge (~) % tar tvf a.ab | more
-rw------- 0 1000 1000 1940 Dec 31 1969 apps/android/_manifest
-rw------- 0 1000 1000 99 Jan 1 21:29 apps/android/r/wallpaper_info.xml
-rw------- 0 1000 1000 1961 Dec 31 1969 apps/com.android.browser.provider/_manifest
...

Note this time, no nocompress implies compress by default
morpheus@Forge (~) % adb backup -all
UI is displayed on device... enter "password"
Now unlock your device and confirm the backup operation.
File is significantly smaller this time
morpheus@Forge (~) % ls -l backup.ab
-rw-r----- 1 morpheus staff 7518645 Jan 1 23:50 backup.ab
morpheus@Forge (~) % head -9 backup.ab
ANDROID BACKUP
3
1 # This time, compressed
AES-256 # Encryption algorithm
FBAEB6CF..# 128 hex digits = 512-bit salt
98A4BF42..# 128 hex digits = 512-bit master key checksum
10000 # Number of PBKDF2 key derivations
0B0D638F9856C5D4F040399AB28A0C5F # Random IV (32 hex digits = 128bit)
E8AD4E9948F356E15A1E41AA265660.. # 192 hex digits = 768 bit Master key blob

Monitoring backup operations

The BackupManagerService stores its configuration in two main locations:

The system secure settings: common to all Android framework services, and accessible
via the Settings class. The manager defines the following settings (with constants in the
Settings class identical to the string values, uppercased:

Setting Purpose
backup_enabled Is backup enabled? Equivalent to bmgr enable

backup_transport Default transport. Settable by bmgr transport ..

backup_provisioned Is backup provisioned? Useful for managed devices

backup_auto_restore Can application data be automatically restored?

The /data/backup directory: containing the list of transports (as directories), and backup
queues.

Normally, you won't need to go into the directory or settings yourself, as you can use bmgr (or
settings) to toggle the settings, and dumpsys backup to get verbose information on the
queues. The annotated output is shown below:

Output 3-18: Using dumpsys to display the backup status

shell@flounder:/ $ dumpsys backup
Backup Manager is disabled / provisioned / not pending init
Auto-restore is enabled
Last backup pass started: 0 (now = 1420171109885)
 next scheduled: 0
List of transports. Google cloud is default, but requires account
Available transports:
 * com.google.android.backup/.BackupTransportService
 destination: Need to set the backup account
 intent: Intent { act=com.google.android.backup.SetBackupAccountActivity }
 android/com.android.internal.backup.LocalTransport
 destination: Backing up to debug-only private cache
 intent: null
Pending init: 0
List of applications that can request backup, sorted by AID:
Participants:
 uid: 1000
 com.android.providers.settings
 android
 uid: 1027
 com.android.nfc
...
Ancestral refers to full backups, which serve as a point of
departure for incremental backup/restore operations
Ancestral packages: none
Ever backed up: 0
Pending key/value backup: 13
 BackupRequest{pkg=com.google.android.gm}
 BackupRequest{pkg=com.google.android.talk}
 ..
Full backup queue:47
Last backup : package name
 0 : com.android.providers.downloads.ui
 0 : com.android.externalstorage
 0 : com.google.android.nfcprovision
 ..

https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/provider/Settings.java

Experiment: Delving deeper into backups

To get a better grip of backups on Android, have a look at the /data/backup directory, which is
where the BackupManagerService maintains its metadata. As root, you should see something
similar to the following:

Output 3-19: The /data/backup directories

Getting the default transport is a simple matter, either by calling on the bmgr upcall script, or
querying the value directly from the system's secure settings:

Output 3-20: Finding the default transport

root@flounder:/data/backup # bmgr list transports
 * com.google.android.backup/.BackupTransportService
 android/com.android.internal.backup.LocalTransport
root@flounder:/data/backup # settings get secure backup_transport
com.google.android.backup/.BackupTransportService

The backup queue is maintained in memory, but also written to the pending directory, as a
journal-xxxx.tmp temporary file, to provide recovery in case the backup service itself crashes. The
file format is simply a concatenation of package names to be backed up. Since the package names
are preceded by a length byte and NULL terminated, use cat -tv to display this file:

Output 3-21: Displaying the backup journal

Lastly, the fb-schedule file schedule is used to maintain a list of all installed packages which
are backup eligible (i.e. declared a BackupAgent in their manifest, as we discuss in Volume II,
and is well documented in the Android Developer Website). The file format is very similar to that
of the journal (albeit with a few more fields), but this is where dumpsys gets handy (which is
even more useful since you don't need root privileges to use it)

Note: This file is a sample chapter from the full book - "Android Internals: A confectioner's
cookbook" - which can be found on http://NewAndroidBook.com/. The chapter was made
available for free as a preview of the book (think of it like Amazon's "Look Inside" :-). I
encourage you to check out Technologeeks.com Android Internals training, which builds
on the book and expands it further with Instructor Led Training.

The book is available to order - for Amazon Kindle, or - you can get it by emailing p r
eorder @ The Book's domain.

Note some links (to other chapters in the book) will not work in this file (since it is partial),
but external links will. Feedback, questions and requests are always welcome.

root@flounder:/data/backup # ls -l
drwx------ system system ... com.android.internal.backup.LocalTransport
drwx------ system system ... com.google.android.backup.BackupTransportService
-rw------- system system 1881 ... fb-schedule
drwx------ system system ... pending

root@flounder:/data/backup # cat -tv pending/journal-168056423.tmp
^@$com.android.providers.userdictionary^@'com.google.android.googlequicksearchbox^@"
com.google.android.marvin.talkback^@$com.google.android.inputmethod.latin^@^Ucom.
google.android.gm^@^Ocom.android.nfc^@^Scom.android.vending^@^Gandroid^@^Wcom.google.
android.talk^@^_com.android.sharedstoragebackup^@)com.google.android.apps.genie.
geniewidget^@^[com.google.android.calendar^@^^com.android.providers.settingsroot@

file:///Users/morpheus/Documents/Android/Book/notyet
http://developer.android.com/guide/topics/data/backup.html#BackupManifest
http://newandroidbook.com/?brp
http://technologeeks.com/courses.jl?brp

