

logd (Android L)

Android L defines a new, much needed logging mechanism with its logd daemon. This
daemon serves as a centralized user-mode logger, as opposed to the traditional Android's
/dev/log/ files, implemented in kernel ring buffers. This not only addresses the main shortcomings of
the ring buffers - their small size and resident memory requirements, but also allows logd to
integrate with SELinux auditing, by registering itself as the auditd, which receives the SELinux
messages from the kernel (via netlink), and records them in the system log.

Another important new feature provided by logd is log pruning, which allows the automatic
clearing or retaining of log records from specific UID. This aims to solve the problem of logs being
flooded with messages from overly-verbose processes, which make it harder to separate the wheat
from the chaff. logd allows for white lists (UIDs or PIDs whose messages will be retained for
longer) and ~blacklists (UIDs or PIDs whose messages will be quickly pruned), using the new -P
switch of logcat.

The logd service is defined in /init.rc as follows:

Listing 4-7: The logd definition in /init.rc

service logd /system/bin/logd
 class core
 socket logd stream 0666 logd logd # Used by CommandListener thread
 socket logdr seqpacket 0666 logd logd # Used by LogReader thread
 socket logdw dgram 0222 logd logd # Used by LogListener thread
 seclabel u:r:logd:s0

Note this service is designed with not one, but four sockets:

/dev/socket/logd: The control interface socket.

/dev/socket/logdw: A write-only socket (permissions 022 = -w--w--w-).

/dev/socket/logdr: A read-write socket, designed for reading. Unlike the logd UN*X domain
socket, this is a seqpacket (sequential packet) socket.

An unnamed NetLink socket: Used when logd also provides auditd functionality for
SELinux messages

The logd spawns listener threads over its sockets, as well as threads for clients (spawned on
demand). The threads are individually named (using prctl(2)) so you can see them for yourself in
logd's /proc/$pid/task/ when logd is running.

As with the traditional logs, logd recognizes the log buffers of main, radio, events, and system,
along with a new log - crash - added in L. These logs are identified by their "log ids" (lids),
numbered 0 through 5, respectively.

System properties used by logd

The logd recognizes several system properties, all in the logd namespace, which toggle its
behavior. Those are well documented in the README.property file in logd's directory, shown here for
convenience:

Listing 4-logdprops: Properties used by logd

name type default description
logd.auditd bool true Enable selinux audit daemon
logd.auditd.dmesg bool true selinux audit messages duplicated and
 sent on to dmesg log
logd.statistics.dgram_qlen bool false Record dgram_qlen statistics. This
 represents a performance impact and
 is used to determine the platform's
 minimum domain socket network FIFO
 size (see source for details) based
 on typical load (logcat -S to view)
persist.logd.size number 256K default size of the buffer for all
 log ids at initial startup, at runtime
 use: logcat -b all -G

persist.logd.size.logname can be used to set buffer sizes for individual logs

Controlling logd

Clients can connect to /dev/socket/logd to control logd with an array of protocol commands.
Commonly, the client doing so is the logcat command, which has been modified to use the socket,
rather than the legacy ioctl(2) codes over /dev/log. The commands are shown in Table 4-9:

Table 4-9: logd protocol commands

Command logcat
switch Purpose

clear lid -c For callers with log credentials, this clears the specified log's buffers

getLogSize lid
-g

Get maximum size of log specified by lid

getLogSizeUsed lid Get actual size of log specified by lid

setLogSize lid -G Set Maximum size of log specified by lid

getStatistics lid -S For callers with log credentials, this retrieves statistics - # of log
messages by PID, etc.

getPruneList -p Get prune list (all logs)

setPruneList -P Set prune list (all logs)

shutdown Force daemon exit. Surprisingly, this doesn't require any
credentials.

The commands in gray require the caller to possess log credentials - be root, possess a primary
GID of root, system, or log, or a secondary GID of log. To verify the last case the code of logd uses
a crude method, of parsing the caller's /proc/pid/status and sifting through its "Groups:" line.

Writing to logd (logging)

Android's logging mechanism is supplied by liblog, and therefore applications remain
oblivious to the underlying implementation of logging. As of L, both Bionic and liblog can be
compiled to use logd (by #defineing TARGET_USES_LOGD), which then directs all the logging
APIs to use logd rather than the traditional /dev/log files, which have, in effect, become legacy.
Effectuating the change is a simple matter, since all system logging APIs eventually funnel to
liblog's __android_log_buf_write (or Bionic's __libc_write_log), which then open the
logdw socket (instead of /dev/log), and write the log message to it. Figure 4-logag shows the flow
of log messages from the application all the way to logd. A similar flow occurs for event log
(android.util.EventLog) messages.

Figure 4-logag: The Android logger architecture

Reading from logd (logcat)

The familiar logcat command in L still sports the same command-line arguments it has in the
past. Its underlying implementation, however, has rewritten to use logd through an updated
liblog API. Clients such as logcat can connect to the logd reader socket (/dev/socket/logdr), and
instruct the LogReader instance of logd to provide the log by writing parameters to it, as shown
in the following table:

Calling Application

JNI

liblog

android.util.Log

android_util_Log.cpp

d(tag, msg)

priority=DEBUG

e(tag, msg)

priority=ERROR

i(tag, msg)

priority=INFO

v(tag, msg)

priority=VERBOSE

w(tag, msg)

priority=WARN

println_native(LOG_ID_MAIN, priority, tag, msg)

liblog

__android_log_buf_write(bufID, priority, tag, msg)

write_to_log(filedes, vector, count)

/dev/socket/logdw

http://developer.android.com/reference/android/util/EventLog.html

Table 4-logdr: Parameters recognized by logd over the reader socket

Parameter Provides
lids=value Log IDs

start=value Start time from log to dump (default is EPOCH, start of log)

tail=value Number of lines from log to dump (as per tail(1) command)

pid=value Filter by PID originator of log messages

dumpAndClose Tells reader thread to exit when log dumping is done

Log records are serialized into a logger_entry_v3 structures before being passed to the
reader over the socket. The structure format is shown in the following figure:

Figure 4-logdmsg: The format of a logd message

Putting all the above together, we can now observe logd in action, through the logcat
command, as shown in the following experiment:

 Experiment: Observing logcat

Using strace will allow you a behind-the-scenes look at the workings of logcat - including
its connection to logd, the command it sends to dump the log, and the serialization of log
messages:

Output 4-logcat: logcat under strace, annotated

Sifting through logd's thread to find and trace the logd.reader.per thread instance will
show you the logging from the perspective of logd, and is left as an exercise for the reader.

Note: This file is a sample chapter from the full book - "Android Internals: A confectioner's
cookbook" - which can be found on http://NewAndroidBook.com/. The chapter was made
available for free as a preview of the book (think of it like Amazon's "Look Inside" :-). I
encourage you to check out Technologeeks.com Android Internals training, which builds
on the book and expands it further with Instructor Led Training.

Note some links (to other chapters in the book) will not work in this file (since it is partial),
but external links will. Feedback, questions and requests are always welcome.

Tracing logcat during an adb logcat operation shows messages are received
from file descriptor 3, and sent to file descriptor 1 (stdout)

root@generic:/# strace logcat
...
connect(3, {sa_family=AF_LOCAL, sun_path="/dev/socket/logdr"}, 20) = 0
write(3, "stream lids=0,3,4", 17) = 17 # Dump main, system, crash
...
\16 = 14 bytes (payload). \30 = 24 bytes (header). T\1 = 340 (PID) ... \3\0\0\0 = System
recvfrom(3, "<\16\30\0T\1\0\0m\1\0\0\275bbT$+\2374\3\0\0\0\6Act".., 5120, 0, NULL, 0) = 3668
write(1, "E/ActivityManager(340): ANR in"..., 5472) = 5472
In case you missed the connect(2) call above (e.g. if attaching to logcat), you can still
look through its /proc/..fd entry, to see file descriptor 3 is a socket - which you can
also deduce from the use of recvfrom(2):
root@generic:/# cd /proc/$LOGCAT_PID/fd
root@generic:/proc/337/fd # ls -l | grep "3 "
lrwx------ root root 2014-11-11 14:24 3 -> socket:[2442]
Looking through /proc/net/unix, which shows domain sockets, we can find the socket
and its remote endpoint (next inode number) - which happens to be logdr
root@generic:/proc/337/fd # grep 2442 /proc/net/unix
00000000: 00000003 00000000 00000000 0005 03 2442
root@generic:/proc/337/fd # grep 2443 /proc/net/unix
00000000: 00000003 00000000 00000000 0005 03 2443 /dev/socket/logdr

http://newandroidbook.com/
http://technologeeks.com/courses.jl

