5/27/2014

A Totally Different View
Under the Hood with Android & Linux

Jonathan Levin
http://Technologeeks.com

Ready your Droids

* |t helps to follow along and try some hands-on
— (this is, after all, a tutorial, and not just another lecture)

* |f you have a real device — great
— But advanced tracing/debugging does need root access

e At a minimum, fire up a KK emulator, and adb to it.

What this isn’t

An ADB shell primer
A CLI how-to
A native-level/NDK how-to

A debugging primer for Dalvik/DDMS

What this is

Collection of native and CLI level debugging techniques
Uses AOSP-supplied tools, and Linux facilities
Applicable primarily to ARM, but also Intel and MIPS
Actually also usable for Linux native level debugging

An excerpt from my upcoming Android Internals book

5/27/2014

The Book

“Android Internals: A Confectioner’s Cookbook”

Unofficial sequel to “OS X and iOS Internals”

To be released end of June, 2014

— Along with Android Lollipop/Licorice/L* announcement?

Updated for KK (4.4.2/API 19), with more to follow

http://newandroidbook.com/

— FAQ, TOC and plenty of bonus materials

Android Architecture

Mainstream Linux

Android:

Applications (C/C++/...)

Applications (Java/DEX)

100%

Gnome/KDE/etc. different

X-Windows

Binaries

Native NI

Frameworks

Dalvik VM

Native
Binaries

Native Libraries (glibC,...)

Native Libraries (Bionic, cutils, ...)

Hardware Abstraction Layer

Linux kernel ~95% same

Linux kernel (2.6.21+ or 3.x) +

Androidisms

Mostly Intel (but any) Hardware

| Mostly ARM (some Intel, MIPS) Hardware |

5/27/2014

ADB and the shell

* ADB provides a command line shell as uid shell

shell@htc_m8wl:/ $ id

uid=2000(shel1) gid=2000(shell) groups=1003(graphics),1004(input),1007(log),
1009 (mount),1011(adb),1015(sdcard_rw) ,1028(sdcard_r),3001(net_bt_admin),
3002 (net_bt),3003(inet),3006(net_bw_stats) context=u:r:shell:s0

* Shell is MirBSD Korn shell, with scripting abilities

e Recommendation: Install SSHD (or dropbear, etc)
— Frees you from tethering requirement, fully remote
— Allows easier (and safer) root access
— Will require public key authentication only (no password..)

ToolBox vs. BusyBox

* Most CLI commands implemented via toolbox

* Toolbox is Android specific subset of busybox
— Pros: linked with Bionic, recognizes AlDs
— Cons: limited toolset, partial functionality

* Recommendation: Install BusyBox
— Statically linked binary, so no dependencies
— Can compile from source, but plenty of binaries out there

5/27/2014

5/27/2014

Getting tools to your device

A lot of the tools you need are right in the emulator

— Most in /system/xbin, and not present in most devices

Can adb pull from emulator image, push to device

Android version should match

Remember to move libraries as well!
— Find dependencies using objdump —x | grep NEEDED

The procfs (/proc) filesystem

e A plethora of diagnostic information:
— General system diagnostics (/proc root)
— Subsystem information (/proc/bus, /proc/irq, ...)
— Sysctl variables (/proc/sys)
— Per process diagnostics (/proc/[0-9]*])

The sysfs (/sys) filesystem

e Complements /proc, and provides:
— Hardware and device representations
— Kernel module information and parameters (/sys/module)
— Kernel subsystem control

The debugfs (/d) filesystem

* Exclusively for kernel-level debugging and control
— Kernel ftrace functionality
— Binder debugging
— Android atrace

root@Android:/ # mount -t debugfs none /sys/kernel/debug
root@Android:/ # mount | grep debug
none /sys/kernel/debug debugfs rw,relatime 0 O

e Usually mounted as /sys/kernel/debug, symlinked /d

5/27/2014

keychords

Little known feature of /init

Binds services/commands to key combination

— “keys” are physical buttons on device, as Android codes

Uses /dev/keychord, where available

Specify “keycodes” combination in /init.rc or other rc

Activity Diagnostics
e Tracing = monitoring run time activity of process

e Uses:
— performance benchmarking
— Logging and monitoring resource access

5/27/2014

5/27/2014

Activity Diagnostics - /proc

e A cornucopia of per process related information:

Jproc entry

Iproc/$pid/cwd Symbolic link to current working directory
Iproc/$pid/cmdline NULL separated argv[] of process

Iproc/$pid/fd Directory with symbolic links to open descriptors
/proc/$pid/fdinfo Information about open descriptors
Iproc/$pid/status Human readable general statistics (VM + More)
Iproc/$pid/task Directory per thread

Iproc/$pid/wchan Wait channel (indicates kernel syscall block/sleep)

Activity Diagnostics - /proc

Iterating over task/* will show threads

Threads largely have same stats, save:
— Status/Name — Dalvik threads are named with prctl(2)
— wchan — Kernel wait channel/syscall

* You can grep name St/status to isolate threads

You can then trace or suspend specific threads

Activity Diagnostics - Tools

* AOSP provides the Isof tool to list open files

— Not just files, but actually any file descriptor for process

e Extremely useful with grep to isolate files

Activity Diagnostics - Tools

* AOSP also provides the strace binary to trace syscalls
— Hands down, the #1 debugging tool out there
— Based on ptrace(2) API, no dependencies

e Useful in oh-so-may ways:
— Can actually parse and present system call arguments
— Can follow forks and threads
— Can be used for timing of syscalls
— Can introduce artificial latency(!)

5/27/2014

5/27/2014

Activity Diagnostics - Tools

* The Itrace tool can also be ported to Android
— Similar to Itrace, but provides library call information
— Uses ptrace(2), but a lot heavier, and needs libelf.

e Supplements strace when your problem is in a lib:
— Arguments and features similar to strace
— Can also be used for syscalls (with —=S)

Activity Diagnostics - Triggers

* Linux doesn’t really support file access triggers
— Inotify is an exception, but no shell command for it*
— Still no notification for in-file access (say, certain offset)

e Using /proc and a little bit of scripting, however...

* - Well, there is now.. Check http://NewAndroidBook.com/files/inotify.tar

10

Memory Diagnostics

* RAM is the most important resource in Android
* Applications leave in perpetual fear of OOM/LMK
* Most memory in Android is shared when possible

e Important to understand memory diagnostics

Low Memory Killer

e Protector of all droids, sworn adversary of all apps
— Linux OOM is not-so-deterministic.
— LMK more predictable — but more conservative

* Each process has an oom_score and an oom_adj
— Native apps can cheat death — Dalvik ones can’t

* LMK parameters can be tweaked through sysfs

Isysfs entry

...adj Array of oom_adjs to kill on minfree hit
...minfree Array of 4k multiples to start kill adj on
cost Memory shrinker cost

debug_level Verbosity for kill operations (1-5)

5/27/2014

11

Memory Diagnostics

e VSS: Virtual Set Size (a.k.a VMSize)

* RSS: Resident Set Size

USS = Unique Set Size + ShSS = Shared Set Size
HWM = RSS Peak

* PSS: Proportional Set Size
USS + (ShSS/#Shares)

Memory Diagnostics - /proc

» /proc filesystem provides key memory statistics:

— Systemwide:
Iproc entry
/proc/meminfo Global memory statistics
/proc/vmstat Kernel view of global memory, per variables

— Per process:

Jproc entry

Iproc/$pid/maps Address Space Layout (mmapped and anon)
Iproc/$pid/smaps As maps + per mapping information
Iproc/$pid/status VM Statistics, and much more

5/27/2014

12

Memory Diagnostics - tools

e AOSP provides procrank and librank tools:

— procrank: Ranks processes by memory utilization

— librank: Ranks libraries by memory utilization (sharing)

* KitKat provides the memtrack tool

— Logs memory utilization to Android logs

UpCall Scripts

e Android provides several CLI interfaces to Dalvik

Upcall tool

am
bmgr
content
ime
input
monkey
pm
settings
svc
wm

Interface to Activity Manager

Backup Manager

Interface with Android Content Providers
Input-Method-Editors

Interface with InputManager, inject events, etc
Stress/Fuzz test tool

Interface to PackageManager

Get/set system settings

Control power, data, wifi and USB

Interact with the Window Manager

5/27/2014

13

5/27/2014

The service tool

CLI interface to servicemanger and the Binder

Simple, but powerful

Can automate virtually all Android services

— Does require root access for some of the services

Depends on service called, virtually undocumented*

* - Well, until now.. That’s why | wrote the book - http://NewAndroidBook.com/

Input Events

* Toolbox’s getevent/sendevent can automate input

* The input upcall script can inject to input manager

Android: Dalvik

i «com.android.server.wm.WindowManagerService |
Application View

com.android.server.input.InputManagerService
WindowInputEventReceiver|

andreid.view. InputChannel

InputChannel I InputDispatcherPaolicy InputReaderPolicy ‘Naﬂvelnpumaneger
‘— InputDispatcher InputReader InputManager
EventHub
Android: Native Jdev/input/event}XX

Linux Kernel = =
mS.l Input Device Driver l__l Linux Input Stack
Interruf

Figure 11-1:The Android Input Stack.

14

Post Mortem Debugging

e Android doesn’t support core dumps by default
— Storage space is limited, and cores can be pretty big
— ulimit —c 0 is set in /init (via setrlimit) and inherited

* Tombstones used instead of cores
— Application crashes, debuggerd is notified
— Checks if debug.db.uid property is set, to wait for gdb
— Otherwise, engraves “tombstone” (crash report)

Tombstones

* Debuggerd uses Linux’s ptrace(2) API to:
— Enumerate all threads
— Get register state for each thread
— Get Stack trace for all threads
— Get stack and instruction pointer memory contents

* Tombstone data is highly architecture specific

5/27/2014

15

If you *do* want cores..

e Set ulimit to unlimited for crashing process

— If you actively set to 0, must be root to unset

* Modify /proc/sys/kernel/core_pattern
— Specify filename, can use %h, %e, %u, %p
— Can also specify pipe (|) and command name
e Command accepts core via stdin (e.g. HTC’s dalvik_coredump.sh)

5/27/2014

16

