
Android Security

New Threats, New Capabilities

Jonathan Levin, @Technologeeks

http://technologeeks.com/

About this talk

• Covered in “Android Internals: A Confectioner’s Cookbook”

• Provides tour of Android security features:

- Chapter 8, to be exact

- .
• Dalvik level security (permissions, IFW)

• Linux inheritance (permissions, capabilities)

• SELinux and SEAndroid

• Rooting and System Security

The Book

• “Android Internals: A Confectioner’s Cookbook”
• 深入解析Android操作系统 - Coming in Chinese (by Dec 2015)

• Parallels “Mac OS X and iOS Internals” (but for Android)
• BTW MOXiI is getting a 2nd Edition (10.10/iOS 8) – Nov 2015!

• Volume I is available! Updated for M PR1!
– M changes require rewrite for Volume II

• http://newandroidbook.com/

– FAQ, TOC and plenty of bonus materials

– Check out technologeeks.com courses!

• Threat models for mobiles consider three main vectors*:

Attack Surface

Mobile Security

- Rogue applications (malware)

- Sandbox applications

- Enforce Strong Permissions

- Harden OS Component Security

* We’ll discount the remote attack vector in this talk, since it isn’t mobile specific

- Rogue user (device theft, or unauthorized root)

- Secure Boot Process

- Encrypt User Data

- Lock Screen

App Security

Device Security

Attack Vectors (simplified)

Mobile Security

Total Compromise

Defeat SELinux

Kernel Code Exec

Get rootGet system

Abuse system call

3rd party daemonFramework vulnerability

Get Personal Data

system_server runs all services
in same address space!

Linux kernel APIs
Unfettered access

Any App

HTML/Plugin/MIME/etc Malformed SMS/MMS

Permission mistake

Arbitrary Code Execution

Insecure, root

Suberted Trusted App

Trusted app may be
compromised as well

User carelessness

Attack Vectors (exploited)

Mobile Security

Total Compromise

Defeat SELinux

Kernel Code Exec

Get rootGet system

Abuse system call

3rd party daemonFramework vulnerability

Get Personal Data

Don’t get me started

Towelroot (futex bug)
Other kernel 0-days

Any App

HTML/Plugin/MIME/etc Malformed SMS/MMS

Permission mistake

Arbitrary Code Execution

HTC WeakSauce

Suberted Trusted App

Mediaserver compromise

User carelessness

Mediaserver compromise

Android Architecture

Contacts
PII

SMS

Most malware

RootKits

System level attacks

Android Security

SELinux,
Kernel Hardening

Unix permissions,
Capabilities

Dalvik Permissions

Code Signatures

• Android’s security is derived from that of Linux and Java

Android Application Security Model

Android Security

• Linux inheritance:

• Java Inheritance:

- Applications run as separate UIDs

- Kernel supports capabilities

- Dalvik VM provides sandbox for applications

- Declarative security model for operations

- Network access filtered in kernel by UserID

• Permissions groups in permission sets:

Application Security Model: Dalvik

Dalvik Level Security

Permission Set For ..

Normal Every day, security insensitive operations

Dangerous Potentially hazardous operations e.g. SMS sending or dialing

Signature Signed code only

SignatureOfSystem Signed code + hardware access

• Permissions can be declared in the Application Manifest

http://developer.android.com/reference/android/Manifest.permission.html

• Applications can further define own custom permissions

• Package Manager interface (pm) can list/manipulate

Top 20 Malware Permissions

• From Wei, Gomez et al (2012) :

• All boils down to a security popup dialog (q.v. iBanking)

Dalvik Level Security

• Exploits: Social Engineering + User ignorance

The rise and fall of AppOps

• Introduced in JB (API 18)

• Allows fine grained permission manipulation

– Similar to iOS’s tccd (coincidentally, of course)

• Interface removed by KK 4.4.2 “security update”

• Functionality still there

– Can restore on modded phone

– Can also use pm grant/revoke

Dalvik Level Security

Permissions rise again

• Major improvement: revokable permissions
– Permissions now checked on use, not on install

– Closely follows the model of iOS (TCCd, anyone?)

• Challenge for developers: security exceptions

Dalvik Level Security

• Poor model, since self-signed certificates are allowed

Android “Code Signing”

• APK files must be signed.. But.. By whom?

• Google warns on non Android-Market App sources

• System APKs are signed with a CA (and also read-only)

• .. But malware gets into Android Market all too often.

• Better to beg forgiveness than ask permission…

Dalvik Level Security

• RiskIQ (02/14):
• Malicious app growth: 388% from 2011 to 2013
• Google malware removal rate: 60% (2011) � 23% (2013)

• Rulebase built from XML files in /data/system/ifw

The Intent Firewall

Dalvik Level Security

• Little known (and unused) feature of 4.3

- base/services/java/com/android/server/firewall/IntentFirewall.java

• ActivityManager calls out to IntentFirewall’s checkXXX:

- Directory still left empty on most devices

- checkStartActivity, checkService and checkBroadcast.

- IFW registers a FileObserver() to watch for rule changes

• Linux serves as the first (and last) tier for security:

Linux Security Model

Linux Tenets of Android Security

- Each application gets unique runtime ID

- No apps (except system) run as root

- Groups for Bluetooth, network access

GID Is authorized to..

AID_NET_BT_ADMIN (3001) Manage BlueTooth sockets

AID_NET_BT (3002) Create a BlueTooth socket

AID_INET (3003) Create an AF_INET or AF_INET6 socket

AID_NET_RAW (3004) Create raw sockets (for ICMP, or non TCP/UDP)

AID_NET_ADMIN (3005) Can bring down interfaces, change IPs, etc.

AID_NET_BW_STATS (3006) Read network bandwidth statistics

AID_NET_BW_ACCT (3007) Modify network bandwidth statistics

android_filesystem_config.h

• Android’s source tree hard-codes “well known” AIDs

• Reserved for system or native use only

• Ownership of device and conf files set appropriately

• Some system property namespaces keyed to AIDs

• ServiceManager whitelists IDs for some services

• /init double checks when started, from /init.rc

Linux Tenets of Android Security

Case Study: system_server

Linux Tenets of Android Security

• API 16 (JB4.1) adds isolated services:

Android Application Security Model

• Add android:isolatedProcess=“true” to service tag

• System allocates a uid between AID_ISOLATED_[START|END]

• (Somewhat) similar to iOS’s XPC

https://groups.google.com/forum/?fromgroups=#!topic/android-developers/pk45eUFmKcM

• UID is effectively powerless (can’t access other services)

Linux Tenets of Android Security

Linux Capabilities

• Originally introduced as part of POSIX 1.e

• A “Divide and Conquer” approach, restricting operations

• Rather than look at EUID, capability mask is considered

• Some 25+ capabilities, supported by Kernel

• Not enabled by default on Linux, but used in Android

Linux Tenets of Android Security

Capabilities

Defined in <linux/capabilty.h> (see capabilities(7))

Capability Application

CAP_CHOWN Allow arbitrary changes to file UIDs and GIDs

CAP_DAC_OVERRIDE Bypass Discretionary Access Controls

CAP_DAC_READ_SEARCH Limited form of CAP_DAC_OVERRIDE

CAP_FOWNER Ignore sticky bit, or owner-only operations

CAP_FSETID Don’t clear SetUID/SetGID bits on files

CAP_IPC_LOCK Permit mlock(2)/mlockall(2)/shmctl(2)

CAP_IPC_OWNER Bypass permission checks on IPC objects

CAP_KILL Bypass permission operations on signals

CAP_LEASE Allow file leases (e.g. fcntl(2))

CAP_LINUX_IMMUTABLE Allow chattr +i (immutable ext2 file attributes)

CAP_MKNOD Create device files (using mknod(2))

CAP_NET_ADMIN Ifconfig/routing operations

CAP_NET_BIND Bind privileged (i.e. <1024) ports

CAP_NET_RAW Permit PF_RAW and PF_PACKET sockets

Linux Tenets of Android Security

Capabilities

Capability Application

CAP_SETUID/CAP_SETGID Enable set[ug]id, GID creds over domain sockets

CAP_SETPCAP Modify own or other process capabilties

CAP_SYS_ADMIN Catch-all: quotactl(2), mount(2), swapon(2),
sethost/domainname(2), IPC_SET/IPC_RMID, UID
creds over domain sockets

CAP_SYS_BOOT Permit reboot(2)

CAP_SYS_CHROOT Permit chroot(2)

CAP_SYS_MODULE Enable create_module(2) and such

CAP_SYS_NICE For nice(2), setpriority(2) and sched functions

CAP_SYS_PACCT Permit calls to pacct(2)

CAP_SYS_PTRACE Enable ptrace(2)

CAP_SYS_RAWIO Permit iopl(2) and ioperm(2)

CAP_SYS_RESOURCE Use of reserved FS space, setrlimit(2), etc.

CAP_SYS_TIME Change system time (settimeofday(2), adjtimex(2)).

CAP_SYS_TTY_CONFIG Permit vhangup(2)

Linux Tenets of Android Security

Linux Tenets of Android Security

Capabilities

Case Study: system_server

• system_server once more provides a great example:

Linux Tenets of Android Security

Other Linux security features

• Removed /proc/kcore (and definitely /dev/kmem)

• Restrict dmesg and kernel poitners (via sysctl)

• Code injection counter measures:

– ASLR (ELF PIE + randomize_va_space)

– DEP

– Stack Canaries and compiler level protections.

Linux Tenets of Android Security

• JellyBean introduced in permissive mode

SE-Linux on Android

SE-Linux

• Probably the most important security feature in Android

• KitKat is the first version to enforce

• SE-Linux protects file, property and application contexts

• Init runs in root:system context (still omnipotent)

• Can set SE context (using sesetcon), enable/disable

• Enfrocement still minimal (zygote, netd, vold, and installd)

SEAndroid

• The policy is comprised of type enforcement (.te) files

• Policy can then allow or disallow access by labels

SE-Linux

• Files provide labels to define types and domains

• types are files and resources (policy objects)

• domains are for processes (policy subjects)

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

SEAndroid

• AOSP provides base policy in external/sepolicy

• Vendors encouraged to add files in device directory
• e.g. device/lge/hammerhead/sepolicy

• BoardConfig.mk defines:
o BOARD_SEPOLICY_DIRS: directory containing TE files
o BOARD_SEPOLICY_UNION: name of files to include

• Policy files are copied to device:

SE-Linux

SEAndroid
Data files
/adb_keys u:object_r:rootfs:s0
/default.prop u:object_r:rootfs:s0..
/fstab\..* u:object_r:rootfs:s0
..

/sys/class/rfkill/rfkill[0-9]*/state --
u:object_r:sysfs_bluetooth_writable:s0
/sys/class/rfkill/rfkill[0-9]*/type --
u:object_r:sysfs_bluetooth_writable:s0
#############################
asec containers
/mnt/asec(/.*)? u:object_r:asec_apk_file:s0
/data/app-asec(/.*)? u:object_r:asec_image_file:s0

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

net.rmnet0 u:object_r:radio_prop:s0
net.gprs u:object_r:radio_prop:s0
net.ppp u:object_r:radio_prop:s0
net.qmi u:object_r:radio_prop:s0
net.lte u:object_r:radio_prop:s0
net.cdma u:object_r:radio_prop:s0
gsm. u:object_r:radio_prop:s0
persist.radio u:object_r:radio_prop:s0
net.dns u:object_r:radio_prop:s0
sys.usb.config u:object_r:radio_prop:s0

ril. u:object_r:rild_prop:s0

...

SE-Linux

SEAndroid

isSystemServer=true domain=system
user=system domain=system_app type=system_data_file
user=bluetooth domain=bluetooth type=bluetooth_data_file
user=nfc domain=nfc type=nfc_data_file
user=radio domain=radio type=radio_data_file
user=_app domain=untrusted_app type=app_data_file levelFrom=none
user=_app seinfo=platform domain=platform_app
type=platform_app_data_file
user=_app seinfo=shared domain=shared_app type=platform_app_data_file
user=_app seinfo=media domain=media_app type=platform_app_data_file
user=_app seinfo=release domain=release_app
type=platform_app_data_file
user=_isolated domain=isolated_app
user=shell domain=shell type=shell_data_file

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

SEAndroid

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

• The /sepolicy is produced by compiling the .te files

• Loaded policy can be found in /sys/fs/selinux/policy

• Can be decompiled with sedispol (from checkpolicy)

SEAndroid

• So far we focused on the rogue app/injected code cases

Back to the Attack Surface

Android Security

- Rogue user (device theft, or unauthorized root)

- Secure Boot Process

- Encrypt User Data

- Lock Screen

• That was only part of the attack landscape. Remember:

Lock Screen

• Complementary to device encryption

- Encryption vs. cold attacks, locking vs. hot attacks

- Pluggable mechanism:

Mechanism Notes

Face Gimmicky, fails miserably with a photo

Gesture Essentially a PIN, but weaker

PIN Classic PIN combination

Passcode Superset of PIN, allows full unicode

Fingerprint (L*) Varies greatly with vendor supports

Trusted Devices (L) Unlock via device pairing over NDEF push (“Android Beam”)

* L is the first to “officially” support with FingerPrint service, though Samsung had this in KK

Securing against a rogue user

KeyguardFaceUnlockView

FaceUnlock KeyguardAbsKeyInputView

KeyguardPINView KeyguardPasswordView

verifyPasswordAndUnlock()

LockPatternUtils

checkPattern()checkPassword()

Lock Settings Service

checkPassword()

KeyguardPinBasedInputView

KeyguardPatternView

UnlockPatternListener

onPatternDetected()

checkPattern()

BiometricSensorUnlock

/data/system/password.key /data/system/gesture.key

passwordToHash() patternToHash()

/data/system/locksettings.db

FaceDetector

TrustManager

(L Addition)

KeyGuardManager

Securing against a rogue user

Viewing lock settings in action

Securing against a rogue user

The Linux Device Mapper

• Android relies on the Linux Device Mapper heavily

• Filesystem/Container encryption (“FDE”, “ASEC”)

• Filesystem verification (DM-Verity)

Android Device Protection

system_call()

Virtual Filesystem Switch

File system driver

Buffer Cache Page Cache

I/O Scheduler

Real Block Device Driver

Data on Device (Encrypted)

User Process 1) Client process initiates a filesystem request

2) VFS layer determines target FS (ext4 or other)

3) Filesystem driver (mounted over

dm-crypt volume) translates to block requests

USER MODE

KERNEL MODE

Device Mapper 4) dm-crypt redirects

To real (encrypted) volume

5) Encrypted data returns to dm-crypt,

which performs decryption using

built-in kernel crypto functions, or

hardware acceleration, if present

Kernel caches store

Both encrypted and

Decrypted data, thus

reducing overhead as

much as possible

The Linux Device Mapper

Android Device Protection

Dm-crypt

• Originated with OBB

• “Matured” with ASEC

• Fully fledged with /data encryption (3.0, effectively 5.0)

• Enhanced for hardware acceleration with L 5.1

• NOT AS SECURE AS YOU WOULD THINK

• Transparent, so apps/injected code/adb unaffected

Android Device Protection

Dm-verity

• New feature in KitKat – Used in Nexi as of late L

• Prevents booting into a modified filesystem (/system)

• Documentation: http://source.android.com/devices/tech/security/dm-verity.html

• Discussion: http://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html

• Will mitigate boot-to-root, but not runtime exploits

Android Device Protection

The Android Boot Process

Chain of Trust extends to kernel + initRAM (root filesystem)

DM-Verity (in KitKat) extends the chain of trust onto the /system partition as well

• Recall Android Generalized Boot:

Android Device Protection

Personal Data Protection

• Android M (finally) advances hardware-backed encryption

• Filesystem encryption now accelerated

Android Device Protection

• keystore service fully integrated with TrustZone

• New GateKeeper service further hides user secrets (passwords)

• Allows temporary tokens for passwords (auto-expiration)

Rooting

• Goal: Obtain UID 0 (root) on device
– Note shell access/app-install is given anyway with USB dev
– Impact: inspect app data, peruse and “mod” system files

can also mod kernel (cyanogen, etc)

• Corollary: Entire security model of Android shatters
- No more ASEC, OBB, encryption, or trust

• May require boot-to-root or be a “1 click”
– Via Fastboot: Reboot device, “update” from alternate ramdisk

• Run modified /init as root, drop “su” in /system/[x]bin.

– “1 click”: Exploit Linux kernel/Android vulnerability

Booting & Rooting

Boot-To-Root

• Android devices (for the most part) allow unlocking
– Notable Exception: Amazon Kindle

• Can make your own “update.zip” or use ones from Web
– Requires unlocking bootloader (“fastboot oem unlock”, if available)

– Unlocking will wipe /data

– Also permanently marks boot-loader (to void warranty)

• Far better to create your own

– Internet-borne rooting tools can potentially contain malware

Booting & Rooting

“1-Click”

• Android is not really supposed to allow “1-Click”

• “1 click” a lot more convenient – but DANGEROUS

– Can occur without user’s permission, or knowledge(!)

– Q.v. Jay Freeman (Saurik) and Google Glass

– Not just code injection! (q.v. HTC One and “WeakSauce”)

• similar in logic/complexity to iOS “untethered” JB

Booting & Rooting

• Any Linux kernel vulnerability is automatically inherited

Attack Surface: Linux =< Android

• Remember: Android is based on Linux

• Additionally, Android contains idiosyncratic bugs

• Towelroot, anyone?

• Two days ago: Zimperium, StageFright

Booting & Rooting

• And we don’t know of any 0-days.. Until they’re out.

• Even more potential vulnerabilities in external packages
• Racoon, mdnsd, etc..

• Well, almost – upcoming 0-day kernel (local root) next week!*

https://www.blackhat.com/us-15/briefings.html#ah-universal-android-rooting-is-back

• Any application’s data directory (or code) can be read

Rooting will bury content protection

• Android’s content protections disintegrate in face of root

• Coupled with DEX decompilation, this is a big problem

• OBBs can be mounted and read

• Your app can be decompiled, modd’ed and repackaged

Booting & Rooting

• No real way to detect a rooted device from a running app

• ASEC containers can be mounted, their keys can be read

• DRM can be bypassed, one way or another.

So, overall..

Android Security

• Sad Truth: Android “spitballs” Linux features together

• Sometimes it holds. Others.. It doesn’t.

