
Android Security

New Threats, New Capabilities

Jonathan Levin, Technologeeks.com

http://technologeeks.com/

About this talk

• Covered in “Android Internals: A Confectioner’s Cookbook”

• Provides tour of Android security features:

- http://www.NewAndroidBook.com/21-Security-L.pdf*

- .
• Linux inheritance (permissions, capabilities)

• Dalvik level security (permissions, IFW)

• SELinux and SEAndroid

• Rooting and System Security

* - Please wait till 11/24/14 before accessing link; previous version (32-Security.pdf) is avaiable now

• Get the slides: http://www.newandroidbook.com/files/Andevcon-Sec.pdf

The Book

• “Android Internals: A Confectioner’s Cookbook”

• Parallels “OS X and iOS Internals” (but for Android)
• BTW OSXiI is getting a 2nd Edition (10.10/iOS 8) – March 2015!

• Book (volume I) is finally available for preorder!
– preorder@newosxbook.com

– Still looking for Amazon to publish Kindle edition (soon!)

– Loads of L framework level changes require rewrite for Volume II

• Updated for L (5.0/API 21)

• http://newandroidbook.com/
– FAQ, TOC and plenty of bonus materials

– Check newandroidbook.com/rss.php

– Check out technologeeks.com (@Technologeeks) for more

• Threat models for mobiles consider three main vectors:

Attack Surface

- Rogue applications (malware)

- Sandbox applications

- Enforce Strong Permissions

- Harden OS Component Security

* We’ll discount the internet-borne attack vector in this talk, since it isn’t mobile specific

- Rogue user (device theft, or unauthorized root)

- Secure Boot Process

- Encrypt User Data

- Device lock

Android Security

- Internet-borne attacks
- Website drive-by, webkit/plugin code injection vectors

The Android Boot Process

Chain of Trust extends to kernel + initRAM (root filesystem)

DM-Verity (in KitKat) extends the chain of trust onto the /system partition as well

• Recall Android Generalized Boot:

Securing against a rogue userThreat: Unauthorized rooting

/Data Encryption

• Android offers data encryption as of Honeycomb

- Default option as of L (for new install, not upgrade)

- Encryption is only for /data, not SD-Card

- Dependent on PIN (or, preferably, a passcode)

Securing against a rogue user

• Fairly well documented:
- https://source.android.com/devices/tech/encryption/
- http://nelenkov.blogspot.com/2014/10/revisiting-android-disk-encryption.html

Threat: Data compromise on device theft

/Data Encryption

• Encryption relies on Linux’s dm-crypt mechanism

• Handled in user mode by vold (try vdc cryptfs)*

• Hardware backed (TZ, QSEE, etc) when possible

* Obviously, exercise discretion here, since you can render the encryption unusable

Securing against a rogue userThreat: Data/App compromise on device theft

Screen Lock

• Complementary to device encryption

- Encryption vs. cold attacks, locking vs. hot attacks

- Pluggable mechanism:

Mechanism Notes

Face Gimmicky, fails miserably with a photo

Gesture Essentially a PIN, but weaker

PIN Classic PIN combination

Passcode Superset of PIN, allows full unicode

Fingerprint (L*) Varies greatly with vendor supports

Trusted Devices (L) Unlock via device pairing over NDEF push (“Android Beam”)

* L is the first to “officially” support with FingerPrint service, though Samsung had this in KK

Securing against a rogue userThreat: Data/App compromise on device theft

KeyguardFaceUnlockView

FaceUnlock KeyguardAbsKeyInputView

KeyguardPINView KeyguardPasswordView

verifyPasswordAndUnlock()

LockPatternUtils

checkPattern()checkPassword()

Lock Settings Service

checkPassword()

KeyguardPinBasedInputView

KeyguardPatternView

UnlockPatternListener

onPatternDetected()

checkPattern()

BiometricSensorUnlock

/data/system/password.key /data/system/gesture.key

passwordToHash() patternToHash()

/data/system/locksettings.db

FaceDetector

TrustManager

(L Addition)

KeyGuardManager

Securing against a rogue user

Viewing lock settings in action

Securing against a rogue user

• As a last resort, remote wipe the phone

The Kill Switch

• Kill Switch functionality actually required by law (.ca.us)

• Likely not too usable on rooted devices

• Does require device to be online to activate

• Or those with open/vulnerable bootloaders

Securing against a rogue userThreat: device theft

• Android’s security is derived from that of Linux and Java

Android Application Security Model

Application Security

• Linux inheritance: (Native level)

• Java Inheritance: (Dalvik level)

- Applications run as separate UIDs

- Kernel supports capabilities

- Java VM provides some sandboxes applications

- Declarative security model for operations

- Network access filtered in kernel by UserID

• Linux serves as the first (and last) tier for security:

Android Application Security Model

- Each application gets unique runtime ID

- No apps (except system) run as root

- Groups for Bluetooth, network access

GID Is authorized to..

AID_NET_BT_ADMIN (3001) Manage BlueTooth sockets

AID_NET_BT (3002) Create a BlueTooth socket

AID_INET (3003) Create an AF_INET or AF_INET6 socket

AID_NET_RAW (3004) Create raw sockets (for ICMP, or non TCP/UDP)

AID_NET_ADMIN (3005) Can bring down interfaces, change IPs, etc.

AID_NET_BW_STATS (3006) Read network bandwidth statistics

AID_NET_BW_ACCT (3007) Modify network bandwidth statistics

Application Security - NativeThreat: Malicious/Errant applications

android_filesystem_config.h

• Android’s source tree hard-codes “well known” AIDs

• Reserved for system or native use only

• Ownership of device and conf files set appropriately

• Some system property namespaces keyed to AIDs

• ServiceManager whitelists IDs for some services

• /init double checks when started, from /init.rc

Application Security - Native

• L augments by SE-enabling init and servicemanager

Case Study: system_server

Application Security - Native

• L adds 1032 as well (AID_PACKAGE_INFO)

• API 16 (JB4.1) adds isolated services:

Android Application Security Model

• Add android:isolatedProcess=“true” to service tag

• System allocates a uid between AID_ISOLATED_[START|END]

• (Somewhat) similar to iOS’s XPC

https://groups.google.com/forum/?fromgroups=#!topic/android-developers/pk45eUFmKcM

• UID is effectively powerless (can’t access other services)

Application Security - NativeThreat: Errant applications

Linux Capabilities

• Originally introduced as part of POSIX 1.e

• A “Divide and Conquer” approach, restricting operations

• Rather than look at EUID, capability mask is considered

• Some 25+ capabilities, supported by Kernel

• Not enabled by default on Linux, but used in Android

Application Security - Native

Capabilities

Defined in <linux/capabilty.h> (see capabilities(7))

Capability Application

CAP_CHOWN Allow arbitrary changes to file UIDs and GIDs

CAP_DAC_OVERRIDE Bypass Discretionary Access Controls

CAP_DAC_READ_SEARCH Limited form of CAP_DAC_OVERRIDE

CAP_FOWNER Ignore sticky bit, or owner-only operations

CAP_FSETID Don’t clear SetUID/SetGID bits on files

CAP_IPC_LOCK Permit mlock(2)/mlockall(2)/shmctl(2)

CAP_IPC_OWNER Bypass permission checks on IPC objects

CAP_KILL Bypass permission operations on signals

CAP_LEASE Allow file leases (e.g. fcntl(2))

CAP_LINUX_IMMUTABLE Allow chattr +i (immutable ext2 file attributes)

CAP_MKNOD Create device files (using mknod(2))

CAP_NET_ADMIN Ifconfig/routing operations

CAP_NET_BIND Bind privileged (i.e. <1024) ports

CAP_NET_RAW Permit PF_RAW and PF_PACKET sockets

Application Security - Native

Capabilities

Capability Application

CAP_SETUID/CAP_SETGID Enable set[ug]id, GID creds over domain sockets

CAP_SETPCAP Modify own or other process capabilties

CAP_SYS_ADMIN Catch-all: quotactl(2), mount(2), swapon(2),
sethost/domainname(2), IPC_SET/IPC_RMID, UID
creds over domain sockets

CAP_SYS_BOOT Permit reboot(2)

CAP_SYS_CHROOT Permit chroot(2)

CAP_SYS_MODULE Enable create_module(2) and such

CAP_SYS_NICE For nice(2), setpriority(2) and sched functions

CAP_SYS_PACCT Permit calls to pacct(2)

CAP_SYS_PTRACE Enable ptrace(2)

CAP_SYS_RAWIO Permit iopl(2) and ioperm(2)

CAP_SYS_RESOURCE Use of reserved FS space, setrlimit(2), etc.

CAP_SYS_TIME Change system time (settimeofday(2), adjtimex(2)).

CAP_SYS_TTY_CONFIG Permit vhangup(2)

Application Security - Native

Case Study: system_server

• system_server once more provides a great example:

Application Security - Native

• L also uses CAP_MAC_OVERRIDE (0000001007813c20)

• Permissions groups in permission sets:

Application Security Model: Dalvik

Permission Set For ..

Normal Every day, security insensitive operations

Dangerous Potentially hazardous operations e.g. SMS sending or dialing

Signature Signed code only

SignatureOfSystem Signed code + hardware access

• Permissions can be declared in the Application Manifest

http://developer.android.com/reference/android/Manifest.permission.html

• Applications can further define own custom permissions

Application Security - Dalvik

• Rulebase built from XML files in /data/system/ifw

The Intent Firewall

• Little known (and unused) feature of 4.3 (expanded in 5.0)

- base/services/core/java/com/android/server/firewall/IntentFirewall.java

• ActivityManager calls out to IntentFirewall’s checkXXX:

- Directory still left empty on most devices

- checkStartActivity, checkService and checkBroadcast.

- IFW registers a FileObserver() to watch for rule changes

Application Security - Dalvik

The Intent Firewall

<rules>
<activity block="true|false" log="true|false" >
<intent-filter>
<path literal="literal" prefix="prefix" sglob="sglob" />
<auth host="[host]" port="[port]" />
<ssp literal="[literal]" prefix="prefix" sglob="sglob" />
<scheme name="[name]" />
<type name="[name]" />
<cat name=“NameOfCategory" />
<action name=“nameOfIntent" />

</intent-filter>
<component-filter name=“nameOfActivity" />

</activity>
</rules>

Great reference: http://www.cis.syr.edu/~wedu/android/IntentFirewall/

(Also covered along with practical exercises and examples in Book)

• XML rulebase format:

Application Security - Dalvik

Android Permissions

• The “pm” shell command manages permissions:

• Really a wrapper over com.Android.commands.pm.PM

usage: pm [list|path|install|uninstall]
pm list packages [-f] [-d] [-e] [-u] [FILTER]
pm list permission-groups
pm list permissions [-g] [-f] [-d] [-u] [GROUP]
pm list instrumentation [-f] [TARGET-PACKAGE]
pm list features
pm list libraries
pm path PACKAGE
pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f]

PATH
pm uninstall [-k] PACKAGE
pm clear PACKAGE
pm enable PACKAGE_OR_COMPONENT
pm disable PACKAGE_OR_COMPONENT
pm setInstallLocation [0/auto] [1/internal] [2/external]

Dalvik Level Security

• Per-Application permissions may be assigned and revoked

Android Permissions (AppOps)

• AppOps Service (introduced in 4.2) further refines model:

• GUI for service mysteriously disappeared in KK

Dalvik Level Security

• Service, however, is still very much alive and well

• Revoked permissions will trigger security exception

• GUI could have been used to kill ads and enhance privacy..

./core/java/com/android/internal/app/IAppOpsS
ervice.aidl

Dalvik Level Security

• Poor model, since self-signed certificates are allowed

The Android Security Model

• APK files must be signed.. But.. By whom?

• Google warns on non Android-Market App sources

• System APKs are signed with a CA (and also read-only)

• .. But malware gets into Android Market all too often.

• Better to beg forgiveness than ask permission…

Dalvik Level Security

• RiskIQ (02/14):
• Malicious app growth: 388% from 2011 to 2013
• Google malware removal rate: 60% (2011) � 23% (2013)

http://securityaffairs.co/wordpress/19400/hacking/android44-master-key-vulnerability.html

Android “Master Key” vulnerability

Dalvik Level Security

• Duplicate APK entries handled incorrectly:

• Doesn’t really involve any master keys, but equally bad

• Signature validation uses Java library – validates 1st instance

• Extraction uses Dalvik native library – extracts 2nd instance

• Outcome: Malware can impersonate any valid package

Android “Fake ID” vulnerability

Dalvik Level Security

• Android didn’t verify the certificate chain correctly

• Allows faking identity of trusted apps via self signed certs

• Application could bundle a fake cert along with a real one

• Real cert does not actually link to fake one, but OS doesn’t care

• Outcome: Malware can impersonate any valid package

(finally patched in L)

• Favorite target: Adobe WebView plugin (flash)

* - L actually allows WebView to auto-update independently of other components

• JellyBean introduced in permissive mode

SE-Linux on Android

SE-Linux

• Probably the most important security feature in Android

• KitKat was the first version to enforce

• SE-Linux protects file, property and application contexts

• Init runs in root:system context (still omnipotent)

• Can set SE context (using sesetcon), enable/disable

• Enfrocement still minimal (zygote, netd, vold, and installd)

• L enforces all throughout the system

SEAndroid

• The policy is comprised of type enforcement (.te) files

• Policy can then allow or disallow access by labels

SE-Linux

• Files provide labels to define types and domains

• types are files and resources (policy objects)

• domains are for processes (policy subjects)

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

SEAndroid

• AOSP provides base policy in external/sepolicy

• Vendors encouraged to add files in device directory
• e.g. device/lge/hammerhead/sepolicy

• BoardConfig.mk defines:
o BOARD_SEPOLICY_DIRS: directory containing TE files
o BOARD_SEPOLICY_UNION: name of files to include

• Policy files are copied to device, as part of the initramfs*

SE-Linux

* - Question: What’s the benefit of putting the policy files into the initramfs?

SEAndroid
Data files
/adb_keys u:object_r:rootfs:s0
/default.prop u:object_r:rootfs:s0..
/fstab\..* u:object_r:rootfs:s0
..

/sys/class/rfkill/rfkill[0-9]*/state --
u:object_r:sysfs_bluetooth_writable:s0
/sys/class/rfkill/rfkill[0-9]*/type --
u:object_r:sysfs_bluetooth_writable:s0
#############################
asec containers
/mnt/asec(/.*)? u:object_r:asec_apk_file:s0
/data/app-asec(/.*)? u:object_r:asec_image_file:s0

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

net.rmnet0 u:object_r:radio_prop:s0
net.gprs u:object_r:radio_prop:s0
net.ppp u:object_r:radio_prop:s0
net.qmi u:object_r:radio_prop:s0
net.lte u:object_r:radio_prop:s0
net.cdma u:object_r:radio_prop:s0
gsm. u:object_r:radio_prop:s0
persist.radio u:object_r:radio_prop:s0
net.dns u:object_r:radio_prop:s0
sys.usb.config u:object_r:radio_prop:s0

ril. u:object_r:rild_prop:s0

...

SE-Linux

SEAndroid

isSystemServer=true domain=system
user=system domain=system_app type=system_data_file
user=bluetooth domain=bluetooth type=bluetooth_data_file
user=nfc domain=nfc type=nfc_data_file
user=radio domain=radio type=radio_data_file
user=_app domain=untrusted_app type=app_data_file levelFrom=none
user=_app seinfo=platform domain=platform_app
type=platform_app_data_file
user=_app seinfo=shared domain=shared_app type=platform_app_data_file
user=_app seinfo=media domain=media_app type=platform_app_data_file
user=_app seinfo=release domain=release_app
type=platform_app_data_file
user=_isolated domain=isolated_app
user=shell domain=shell type=shell_data_file

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

SEAndroid

SE-Linux

File Usage

file_contexts Restricts access to files

property_contexts Restricts access to properties

seapp_contexts Application (user contexts)

sepolicy Compiled policy

• The /sepolicy is produced by compiling the .te files

• Loaded policy can be found in /sys/fs/selinux/policy

• Can be decompiled with sedispol (from checkpolicy)

SEAndroid

SE-Linux

• chmod 4775, and drop into /system/bin

SEAndroid: Experiment

• Compile the following program

• Run it, and channel the power of root!

• You’ll need to mount –o remount,rw /system first
• Won’t work on /data, because /data is mounted nosuid

• Or, well. Maybe not. Pre-KitKat? Yep. Post KitKat: Not really.
• Use ps –Z and ls –Z to find out why

Rooting

• Goal: Obtain UID 0 (root) on device
– Note shell access/app-install is given anyway with USB dev
– Impact: inspect app data, peruse and “mod” system files

can also mod kernel (cyanogen, etc)

• Corollary: Entire security model of Android shatters
- No more ASEC, OBB, encryption, or trust

• May require boot-to-root or be a “1 click”
– Via Fastboot: Reboot device, “update” from alternate ramdisk

• Run modified /init as root, drop “su” in /system/[x]bin.

– “1 click”: Exploit Linux kernel/Android vulnerability

Booting & Rooting

Boot-To-Root

• Android devices (for the most part) allow unlocking
– Notable Exception: Amazon Kindle

• Can make your own “update.zip” or use ones from Web
– Requires unlocking bootloader (“fastboot oem unlock”, if available)

– Unlocking will wipe /data

– Also permanently marks boot-loader (to void warranty)

• Far better to create your own

– Internet-borne rooting tools can potentially contain malware

Booting & Rooting

“1-Click”

• Android is not really supposed to allow “1-Click”

• “1 click” a lot more convenient – but DANGEROUS
– Can occur without user’s permission, or knowledge(!)

– q.v. Jay Freeman (Saurik) and Google Glass

– Not just code injection! (q.v. HTC One and “WeakSauce”)

• May result from vendor vulnerability

– q.v. HTC (“WeakSauce”, “FireWater”), and QSEECOM

• similar in logic/complexity to iOS “untethered” JB

Booting & Rooting

TowelRoot

• Released just after Andevcon Boston

• Perfect example of a 1-click

• Uses a well known Linux kernel bug
– CVE-2014-3153 – The FUTEX bug

• Exploitable with no permissions, even w/SELinux

Booting & Rooting

Dm-verity

• New feature in KitKat – still optional

• Prevents booting into a modified filesystem (/system)

• Documentation: http://source.android.com/devices/tech/security/dm-verity.html

• Discussion: http://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html

• Will mitigate boot-to-root, but not runtime exploits

Booting & Rooting

• Any Linux kernel vulnerability is automatically inherited

Attack Surface: Linux =< Android

• Remember: Android is based on Linux

• Additionally, Android may contain idiosyncratic bugs

• October 2011: Researchers demonstrate 2.6.35 priv esc.

• October 2011: Researchers bypass security prompts.

Booting & Rooting

• And we don’t know of any 0-days.. Until they’re out.

• Any application’s data directory (or code) can be read

Rooting will bury content protection

• Android’s content protections disintegrate in face of root

• Coupled with DEX decompilation, this is a big problem

• OBBs can be mounted and read

• Your app can be decompiled, modd’ed and repackaged

Booting & Rooting

• No real way to detect a rooted device from a running app

• ASEC containers can be mounted, their keys can be read

• DRM can be bypassed, one way or another.

So, overall..

Android Security

2014 : 7+ major security bugs for Android.

Oh well. Maybe next year?

