Android Security
New Threats, New Capabilities

Jonathan Levin, Technologeeks.com

About this talk

* Provides tour of Android security features:

« Linux inheritance (permissions, capabilities)
e Dalvik level security (permissions, IFW)
 SELinux and SEANdroid

* Rooting and System Security

e Get the slides:

e Covered in “Android Internals: A Confectioner’s Cookbook”

*

* - Please wait till 11/24/14 before accessing link; previous version (32-Security.pdf) is avaiable now

The Book

“Android Internals: A Confectioner’s Cookbook”

Parallels “OS X and iOS Internals” (but for Android)
e BTW OSXil is getting a 2"d Edition (10.10/i0S 8) — March 2015!

Book (volume 1) is finally available for preorder!

— preorder@newosxbook.com

— Still looking for Amazon to publish Kindle edition (soon!)

— Loads of L framework level changes require rewrite for Volume Il

Updated for L (5.0/API 21)

http://newandroidbook.com/

— FAQ, TOC and plenty of bonus materials

— Check newandroidbook.com/rss.php

— Check out technologeeks.com (@Technologeeks) for more

Android Security

Attack Surface

 Threat models for mobiles consider three main vectors:
- Rogue user (device theft, or unauthorized root)
- Secure Boot Process
- Encrypt User Data

- Device lock
- Rogue applications (malware)

- Sandbox applications
- Enforce Strong Permissions

- Harden OS Component Security

- Internet-borne attacks
- Website drive-by, webkit/plugin code injection vectors

* We'll discount the internet-borne attack vector in this talk, since it isn't mobile specific

Threat: Unauthorized rooting Securing against a rogue user

The Android Boot Process

e Recall Android Generalized Boot:

1 1] 1
1] 1 1
BootROM : : : :
1] 1 1
1] 1 1
! Android ! _ ! InitRamFS: ! Frameworks
SBL s l—s Linux Kernel . B —
: BootLoader , , /init + rc files . GUI, etc..
1] 1 1
sesessssnarnnnsassssasnennny 5 =) -
: (modem, ' ' ' !
......... DSP etc) i : : :
rpm, sbl, modem.. : aboot partition : boot partition (bootimg) : /system partition
_ 1 1 1

Chain of Trust extends to kernel + initRAM (root filesystem)

DM-Verity (in KitKat) extends the chain of trust onto the /system partition as well

Threat: Data compromise on device theft Securing against a rogue user

/Data Encryption

« Android offers data encryption as of Honeycomb
- Default option as of L (for new install, not upgrade)

- Encryption is only for /data, not SD-Card

- Dependent on PIN (or, preferably, a passcode)

 Fairly well documented:

Threat: Data/App compromise on device theft Securing against a rogue user

/Data Encryption

* Encryption relies on Linux’s dm-crypt mechanism

 Handled in user mode by vold (try vdc cryptfs)*

restart Signal init to restart frameworks
cryptocomplete Query if filesystem is fully encrypted
enablecrypto|inplace|wipe password |Encrypt filesystem, possibly erasing first
changepw |old_passwd new_passwd|Change encryption password

crypifs checkpw passwd Check if supplied password can mount encrypted fs
verifypw passwd Used by BackupManagerService
getfield name Get metadata field from cryptfs
setfield name value Set metadata field in cryptfs

 Hardware backed (TZ, QSEE, etc) when possible

* Obhviously, exercise discretion here, since you can render the encryption unusable

Threat: Data/App compromise on device theft Securing against a rogue user

Screen Lock

 Complementary to device encryption
- Encryption vs. cold attacks, locking vs. hot attacks

- Pluggable mechanism:

Face Gimmicky, fails miserably with a photo

Gesture Essentially a PIN, but weaker

PIN Classic PIN combination

Passcode Superset of PIN, allows full unicode

Fingerprint (L*) Varies greatly with vendor supports

Trusted Devices (L) Unlock via device pairing over NDEF push (“Android Beam”)

* L is the first to “officially” support with FingerPrint service, though Samsung had this in KK

KeyguardFaceUnlockView,

KeyguardPINView

KeyguardPasswordView

BiometricSensorUnlock

FaceUnlock

FaceDetector

KeyguardPinBasedInputView

KeyGuardManager

\L verifyPasswordAndUnlock()

KeyguardAbsKeylnputView

checkPassword()

Securing against a rogue user

KeyguardF

PatternView

onPatternDetected()

UnlockPatternListener

checkPattern()

LockPatternUtils

i checkPassword()

l checkPattern()

Lock Settings Service

l passwordToHash()

/data/system/password.key

/data/system/locksettings.db

l patternToHash()

/data/system/gesture.key

TrustManager

(L Addition)

Securing against a rogue user

Viewing lock settings Iin action

root@htc mBwl:/data # sqlite3 /data/system/locksettings.db

SQLite version 3.7.11 2012-03-20 11:35:50

Enter ".help” for instructions

Enter SQL statements terminated with a "“;"

sglite> .dump

PRAGMA foreign keys=0FF;

BEGIN TRANSACTION;

CREATE TABLE android metadata (locale TEXT);

INSERT INTO "android metadata"” VALUES('en US');

CREATE TABLE locksettings (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,user INTEGER,value TEXT):

INSERT INTO locksettings VALUES(2, 'lockscreen.options’',0, 'enable facelock');

INSERT INTO locksettings VALUES(3, 'migrated’',0, 'true');

INSERT I locksettings VALUES(4, 'lock_screen owner_ info enabled’',0,°0');

INSERT I locksettings VALUES(5, ‘'migrated user specific’',0,'true’)

INSERT I} locksettings VALUES(9, 'lockscreen.patterneverchosen’,0,'1");

INSERT I locksettings VALUES(11l, 'lock pattern visible pattern’',0,'1");

INSERT I locksettings VALUES(12, 'lockscreen.password salt',0, '-3846188034160474427");

INSERT I locksettings VALUES(B81, 'lockscreen.disabled’,0,'1"'); # No Lock

INSERT Il locksettings VALUES(B2, 'lock_ fingerprint autolock',0,'0’

INSERT I locksettings VALUES(83, 'lockscreen.alternate method',0,'

INSERT I locksettings VALUES(84, 'lock pattern autolock',0,'0');

INSERT INTO locksettings VALUES(86, 'lockscreen.password type alternate’',0,'0");

INSERT Il locksettings VALUES(87, 'lockscreen.password type',0,'131072"); # PIN

INSERT I} locksettings VALUES(88, 'lockscreen.passwordhistory',0,"'"):;

DELETE { sglite_sequence;

INSERT I "sglite_ sequence"” VALUES('locksettings',88);

COMMIT:

sglite>

r

Threat: device theft Securing against a rogue user

The Kill Switch

* As a last resort, remote wipe the phone

 Kill Switch functionality actually required by law (.ca.us)

 Does require device to be online to activate

 Likely not too usable on rooted devices

e Or those with open/vulnerable bootloaders

Application Security

Android Application Security Model

* Android’s security Is derived from that of Linux and Java

 Linux inheritance: (Native level)

- Applications run as separate UIDs

- Kernel supports capabilities
- Network access filtered in kernel by UserlD

« Java Inheritance: (Dalvik level)
- Java VM provides some sandboxes applications

- Declarative security model for operations

Threat: Malicious/Errant applications

Application Security - Native

Android Application Security Model

e Linux serves as the first (and last) tier for security:

- Each application gets unique runtime ID

- No apps (except system) run as root

- Groups for Bluetooth, network access

GID

AID_NET_BT_ADMIN (3001)
AID_NET_BT (3002)
AID_INET (3003)

AID_NET_RAW (3004)
AID_NET_ADMIN (3005)
AID_NET_BW_STATS (3006)
AID_NET_BW_ACCT (3007)

Is authorized to..

Manage BlueTooth sockets

Create a BlueTooth socket

Create an AF_INET or AF_INETG6 socket

Create raw sockets (for ICMP, or non TCP/UDP)
Can bring down interfaces, change IPs, etc.
Read network bandwidth statistics

Modify network bandwidth statistics

Application Security - Native

e Android’s source tree hard-codes “well known” AlDs
 Reserved for system or native use only

« Ownership of device and conf files set appropriately

e /init double checks when started, from /init.rc

e Some system property namespaces keyed to AlDs

« ServiceManager whitelists IDs for some services

e L augments by SE-enabling init and servicemanager

Application Security - Native

Case Study: system_server

Table s2-ssp:: Group memberships of system_server

gid #define Permits

1001 |arp_rapIO /dev/socket/rild, on the other side of which is the Radio Interface Layer Daemon
1002 |AID_BLUETOOTH Bluetooth configuration files

1003 |AID_GRAPHICS /dev/graphics/fbo, the framebuffer

1004 |arp_1iNPUT /dev/input/*, the device nodes for input devices.

1005 |aIp_AupIO /dev/eac, or other audio device nodes.

1006 |AID_CAMERA Access to camera sockets

1007 |a1Dp_LOG /dev/log/*

1008 |Aarp_compass Compass and location services

1009 |AID_MOUNT /dev/socket/vold, on the other side of which is the VOLume Daemon
1010 |Aarp_wiFI WiFi Configuration files

1018 |aIDp usB USB Devices

3001 |AID BT ADMIN Creation of AF_BLUETOOTH sockets

3002 |Arp NET BT Creation of sco, rfcomm, or |2cap sockets

3003 |AID NET INET /dev/socket/dnsproxyd, and creation of AF_INET[6] (IPv4, IPv6) sockets
3006 |arp_ner_Bw_sTars|Reading bandwidth statistics accounting

3007 |arp wer Bw acct |Modifying bandwidth statistics accounting

L adds 1032 as well (AID_PACKAGE_INFO)

Threat: Errant applications Application Security - Native

Android Application Security Model

 API 16 (JB4.1) adds isolated services:

 Add android:isolatedProcess="true” to service tag

e System allocates a uid between AIb_ISOLATED_[START|END]
o UID Is effectively powerless (can’t access other services)

e (Somewhat) similar to I0S’s XPC

Dianne Hackborn 7127112 W |~

I'll go farther: are you writing a web browser? If no, just ignore it. :)

(Actually we can go a little more broadly and say it may be of interest if you are writing an app that downloads arbitrary
content from untrusted sources which requires very complicated code to parse and render, complicated enough that it is
basically impossible to guarantee you don't have security holes, so it would be useful to have another layer of protection
between your app and that content.)

- show quoted text -

- hide quoted text -

On Thu, Jul 26, 2012 at 11:42 PM, Mehrag <gaurav....@gmail.com> wrote:

> Can anyone put some light as what's the real/main advantage of introducing
> |solatedprocess tag within Services in JellyBean[Android].

Linux Capabilities

Originally introduced as part of POSIX 1.e

A “Divide and Conquer” approach, restricting operations
Rather than look at EUID, capability mask is considered
Some 25+ capabillities, supported by Kernel

Not enabled by default on Linux, but used in Android

Application Security - Native

Capabillities

Defined in <linux/capabilty.h> (see capabilities(7))

CAP_CHOWN Allow arbitrary changes to file UIDs and GIDs
CAP_DAC_ OVERRIDE Bypass Discretionary Access Controls
CAP_DAC_READ_SEARCH Limited form of CAP_DAC_OVERRIDE
CAP_FOWNER Ignore sticky bit, or owner-only operations
CAP_FSETID Don't clear SetUID/SetGID bits on files
CAP_IPC_LOCK Permit mlock(2)/mlockall(2)/shmctl(2)
CAP_IPC_OWNER Bypass permission checks on IPC objects
CAP_KILL Bypass permission operations on signals
CAP_LEASE Allow file leases (e.qg. fcntl(2))
CAP_LINUX_IMMUTABLE Allow chattr +i (immutable ext2 file attributes)
CAP_MKNOD Create device files (using mknod(2))
CAP_NET_ADMIN Ifconfig/routing operations

CAP_NET_BIND Bind privileged (i.e. <1024) ports
CAP_NET_RAW Permit PF_RAW and PF_PACKET sockets

Application Security - Native

Capabillities

CAP_SETUID/CAP_SETGID

Enable set[ug]id, GID creds over domain sockets

CAP_SETPCAP

Modify own or other process capabilties

CAP_SYS_ADMIN

Catch-all: quotactl(2), mount(2), swapon(2),
sethost/domainname(2), IPC_SET/IPC_RMID, UID
creds over domain sockets

CAP_SYS_BOOT

Permit reboot(2)

CAP_SYS_CHROOT

Permit chroot(2)

CAP_SYS_MODULE

Enable create_module(2) and such

CAP_SYS NICE

For nice(2), setpriority(2) and sched functions

CAP_SYS_PACCT

Permit calls to pacct(2)

CAP_SYS PTRACE

Enable ptrace(2)

CAP_SYS_RAWIO

Permit iopl(2) and ioperm(2)

CAP_SYS_RESOURCE

Use of reserved FS space, setrlimit(2), etc.

CAP_SYS TIME

Change system time (settimeofday(2), adjtimex(2)).

CAP_SYS_TTY CONFIG

Permit vhangup(2)

Application Security - Native

Case Study: system_server

e system_server once more provides a great example:

Table s2-ssc:: Capabilities used by system server

capability #define Permits
0x20 CAP_KILL Kill processes not belonging to the same uid
0x400 caP NET BIND SERVICE |Bind local ports at under 1024
0x800 CAP_NET_BROADCAST Broadcasting/Multicasting
0x1000 CAP_NET_ADMIN Interface configuration, Routing Tables, etc.
0x2000 CAP_NET_ RAW Raw sockets
0x10000 CAP_SYS MODULE Insert/remove module into kernel
0x800000 CAP_SYS NICE Set process priority and affinity
0x1000000 CAP_SYS RESOURCE Set resource limits for processes
0x2000000 CAP_SYS TIME Set real-time clock
0x4000000 cap_sys Try _conric |Configure/Hangup tty devices
0x7813C20 Resulting BitMask

e L also uses cAP_MAC_OVERRIDE (0000001007813c20)

Application Security - Dalvik

Application Security Model: Dalvik

e Permissions can be declared in the Application Manifest

http://developer.android.com/reference/android/Manifest.permission.html

e Permissions groups in permission sets:

For .

Normal Every day, security insensitive operations

Dangerous Potentially hazardous operations e.g. SMS sending or dialing
Signature Signed code only

SignatureOfSystem Signed code + hardware access

» Applications can further define own custom permissions

Application Security - Dalvik

The Intent Firewall

e Little known (and unused) feature of 4.3 (expanded in 5.0)

- base/services/core/java/com/android/server/firewall/IntentFirewall.java

* Rulebase built from XML files in /data/system/ifw

- Directory still left empty on most devices
- IFW reqisters a FileObserver() to watch for rule changes

 ActivityManager calls out to IntentFirewall’s checkXXX:

- checkstartActivity, checkService and checkBroadcast.

Application Security - Dalvik

The Intent Firewall

e XML rulebase format:

<rules>
<activity block="true/false" log="true/false" >
<intent-filter>
<path Tliteral="T7T7teral" prefix="prefix" sglob="sglob" />
<auth host="[host]" port="[port]" />
<ssp literal="[1literal]" prefix="prefix" sglob="sgl/ob" />
<scheme name="[name]" />
<type name="[name]" />
<cat name=“Nameofcategory" />
<action name=“nameofintent" />
</intent-filter>
<component-filter name=“nameofActivity" />
</activity>
</rules>

Great reference:

(Also covered along with practical exercises and examples in Book)

e The “pm” shell command manages permissions:

Android Permissions

Dalvik Level Security

usage:. pm
pm
pm
pm
pm
pm
pm
pm
pm

PATH
pm
pm
pm
pm
pm

[Tist|path|install|uninstall]

Tist
Tist
Tist
Tist
Tist
Tist
path

install [-1] [-r] [-t] [-1 INSTALLER_PACKAGE_NAME] [-s] [-f]

packages [-f] [-d] [-e] [-ul] [FILTER]
permission-groups

permissions [-g] [-f] [-d] [-u] [GROUP]
instrumentation [-f] [TARGET-PACKAGE]
features

Tibraries

PACKAGE

uninstall [-k] PACKAGE

clear PACKAGE

enable PACKAGE_OR_COMPONENT
disable PACKAGE_OR_COMPONENT

setInstallLocation [0/auto] [1/internal] [2/external]

* Really a wrapper over com.Android.commands.pm.PM

Dalvik Level Security

Android Permissions (AppOps)

* AppOps Service (introduced in 4.2) further refines model:

o Per-Application permissions may be assigned and revoked

 Revoked permissions will trigger security exception

o GUI for seivice mysteriously disappeared in KK

e GUI could have been used to kill ads and enhance privacy..

e Service, however, is still very much alive and well

AppOps

Dalvik Level Security

The ActivityManager also contains the hidden AppOps AppOps

service. This service was added in Jellybean, with the
aim of providing fine grained permission control for .)
various installed packages. Initially, it had its own GUI, | Interface: com.android.internal.app.IAppOpsService

Name: appops

but the GUI was removed in KitKat 4.4.1. The service, File: /data/system/appops.xml

however, is not going away, and has been further
extended in Android L.

Started by: ActivityManagerService

Listing s2-ao0s: The AppOpsService methods defined in IAppOpsService.aidl

}

/*
/*
/*
/*
/*
[*
/*

/*
/*
/*
/*
[*

/f
/r/
1

Saanb wN

8
9
10
11
12

interface IAppOpsService ({

These first methods are also called by native code, so must

be
*/
*/
* /[
*/
*/
*/
*/

*/
*/
*/
*/
*/

/* The

[* 13 */
/* 14 */

/* 15 */
/* 16 */

kept in sync with frameworks/native/include/binder/IAppOpsService.h
int checkOperation(int code, int uid, String packageName);
int noteOperation(int code, int uid, String packageName);
int startOperation(IBinder token, int code, int uid, String packageName);
void finishOperation(IBinder token, int code, int uid, String packageName);
void startWatchingMode(int op, String packageName, IAppOpsCallback callback);
void stopWatchingMode(IAppOpsCallback callback);
IBinder getToken(IBinder clientToken);
// Remaining methods are only used in Java.
int checkPackage(int uid, String packageName);
List getPackagesForOps(in int[] ops);
List getOpsForPackage(int uid, String packageName, in int[] ops);
void setMode(int code, int uid, String packageName, int mode);
void resetAllModes();
following are new in L */
int checkAudioOperation(int code, int usage, int uid, String packageName);
void setAudioRestriction(int code, int usage, int uid, int mode,
in String[] exceptionPackages);

void setUserRestrictions(in Bundle restrictions, int userHandle);
void removeUser(int userBHandle);

The services register with the ServiceManager when the ActivityManagerService's setSystemProcess() is called,

right before a call to initialize the Entropy manager. Additionally, the BatteryStats, UsageStats and
AppOpsService require explicit calls to their publish() method, which is done in ActivityManagerService's main().

Dalvik Level Security

The Android Security Model

* APK files must be signed.. But.. By whom?

 Poor model, since self-signed certificates are allowed

o System APKs are signed with a CA (and also read-only)

* Google warns on non Android-Market App sources

.. But malware gets into Android Market all too often.

» Better to beg forgiveness than ask permission...

. RiskIQ (02/14):
* Malicious app growth: 388% from 2011 to 2013
* Google malware removal rate: 60% (2011) - 23% (2013)

Dalvik Level Security

Android “Master Key” vulnerability

e Doesn’t rea

e Duplicate A

ly involve any master keys,

PK entries handled incorrect

put equally bad

Y.

e Signature validation uses Java library — validates 15t instance

« Extraction uses Dalvik native library — extracts 2" instance

« Outcome: Malware can impersonate any valid package

http://securityaffairs.co/wordpress/19400/hacking/android44-master-key-vulnerability.html

Dalvik Level Security

Android “Fake ID” vulnerability

 Allows faking identity of trusted apps via self signed certs

« Android didn’t verify the certificate chain correctly

« Application could bundle a fake cert along with a real one

* Real cert does not actually link to fake one, but OS doesn’t care

« Outcome: Malware can impersonate any valid package

« Favorite target: Adobe WebView plugin (flash)

(finally patched in L)

* - L actually allows WebView to auto-update independently of other components

SE-Linux

SE-Linux on Android

* Probably the most important security feature in Android

o JellyBean introduced in permissive mode

o KitKat was the first version to enforce

 Enfrocement still minimal (zygote, netd, vold, and installd)

* L enforces all throughout the system

« SE-Linux protects file, property and application contexts

 Init runs in root:system context (still omnipotent)

« (Can set SE context (using sesetcon), enable/disable

SE-Linux

SEANdroid

 The policy is comprised of type enforcement (.te) files

 Files provide labels to define types and domains
e types are files and resources (policy objects)
« domains are for processes (policy subjects)

e Policy can then allow or disallow access by labels

SE-Linux

SEANdroid

 AOSP provides base policy in external/sepolicy

 Vendors encouraged to add files in device directory
e e.g.device/lge/hammerhead/sepolicy

» BoardConfig.mk defines:
o0 BOARD_SEPOLICY_DIRS: directory containing TE files
0 BOARD_SEPOLICY_UNION: name of files to include

* Policy files are copied to device, as part of the initramfs*

file_contexts Restricts access to files
property contexts Restricts access to properties
seapp_contexts Application (user contexts)

sepolicy Compiled policy

* - Question: What's the benefit of putting the policy files into the initramfs?

SEANdroid

SE-Linux

Data files
/adb_keys
/default.prop
/fstab\..*

u:object_r:rootfs:s0
u:object_r:rootfs:s0..
u:object_r:rootfs:s0

/sys/class/rfkill/rfkil1[0-9]%/state --
u:object_r:sysfs_bluetooth_writable:s0
/sys/class/rfkill/rfkil1[0-9]%/type --
u:object_r:sysfs_bluetooth_writable:s0

HARHRHBHBHHRHR AR AR RHR AR R RHHRH

asec containers
/mnt/asec(/.*)7?
/data/app-asec(/.*)?

u:object_r:asec_apk_file:sO
u:object_r:asec_image_file:sO

file_contexts
property _contexts
seapp_contexts

sepolicy

Restricts access to files
Restricts access to properties
Application (user contexts)

Compiled policy

SEANdroid

SE-Linux

het.rmnet0

net.gprs
net.ppp
net.qmi
net.lte

nhet.cdma

gsm.
persist.
net.dns

sys.usb.

ril.

radio

config

ccCccCccCccCccCccccc

<

:object_r:
:object_r:
:object_r:
:object_r:
:object_r:
:object_r:
:object_r:
:object_r:
:object_r:
:object_r:

:object_r:

radio_prop:s0
radio_prop:s0
radio_prop:s0
radio_prop:sO
radio_prop:s0O
radio_prop:s0O
radio_prop:sO
radio_prop:sO
radio_prop:sO
radio_prop:sO

rild_prop:sO

Restricts access to files

file_contexts
property_contexts
seapp_contexts

sepolicy

Restricts access to properties
Application (user contexts)

Compiled policy

SE-Linux

SEANdroid

1sSystemServer=true domain=system

user=system domain=system_app type=system_data_file

user=bluetooth domain=bluetooth type=bluetooth_data_file

user=nfc domain=nfc type=nfc_data_file

user=radio domain=radio type=radio_data_file

user=_app domain=untrusted_app type=app_data_file levelFrom=none
user=_app seinfo=platform domain=platform_app
type=platform_app_data_file

user=_app seinfo=shared domain=shared_app type=platform_app_data_file
user=_app seinfo=media domain=media_app type=platform_app_data_file
user=_app seinfo=release domain=release_app
type=platform_app_data_file

user=_1isolated domain=i1solated_app

user=shell domain=shell type=shell_data_file

file_contexts Restricts access to files
property_contexts Restricts access to properties
seapp_contexts Application (user contexts)

sepolicy Compiled policy

SE-Linux

SEANdroid

 The /sepolicy Is produced by compiling the .te files

 Loaded policy can be found in /sys/fs/selinux/policy

e Can be decompiled with sedispol (from checkpolicy)

file_contexts Restricts access to files
property_contexts Restricts access to properties
seapp_contexts Application (user contexts)

sepolicy Compiled policy

SE-Linux

SEANdroid: Experiment

e Compile the following program

Listing 21-5: A simple implementation of su, for non SE-Linux enforced devices

#include <stdio.h>
void main(int argc, char **argv)
{
setuid(0);
setgid(0);
system("/system/bin/sh");

}

« chmod 4775, and drop into /system/bin
* You'll need to mount —o remount,rw /system first
 Won't work on /data, because /data is mounted nosuid

 Run it, and channel the power of root!

* Or, well. Maybe not. Pre-KitKat? Yep. Post KitKat: Not really.
e Useps -Z and 1ls -Z to find out why

|

got root? [\ Rooting

e Goal: Obtain UID O (root) on device

— Note shell access/app-install is given anyway with USB dev
— Impact: inspect app data, peruse and “mod” system files
can also mod kernel (cyanogen, etc)

e Corollary: Entire security model of Android shatters
- No more ASEC, OBB, encryption, or trust

 May require boot-to-root or be a “1 click”

— Via Fastboot: Reboot device, “update” from alternate ramdisk
« Run modified /init as root, drop “su” in /system/[x]bin.

— “1 click”: Exploit Linux kernel/Android vulnerability

Booting & Rooting

Boot-To-Root

* Android devices (for the most part) allow unlocking

— Notable Exception: Amazon Kindle

« Can make your own “update.zip” or use ones from Web

— Requires unlocking bootloader (“fastboot oem unlock”, if available)
— Unlocking will wipe /data
— Also permanently marks boot-loader (to void warranty)

 Far better to create your own

— Internet-borne rooting tools can potentially contain malware

“1-Click”
Android Is not really supposed to allow “1-Click”

“1 click” a lot more convenient — but DANGEROUS

— Can occur without user’s permission, or knowledge(!)
— @.v. Jay Freeman (Saurik) and Google Glass
— Not just code injection! (g.v. HTC One and “WeakSauce”)

May result from vendor vulnerability
— g.v. HTC (“WeakSauce”, “FireWater”), and QSEECOM

similar in logic/complexity to 1I0S “untethered” JB

Booting & Rooting

TowelRoot

Released just after Andevcon Boston
Perfect example of a 1-click

Uses a well known Linux kernel bug
— CVE-2014-3153 — The FUTEX bug

Exploitable with no permissions, even w/SELInux

Booting & Rooting

Dm-verity
New feature in KitKat — still optional

Prevents booting into a modified filesystem (/system)

Documentation:

Discussion:

Will mitigate boot-to-root, but not runtime exploits

Booting & Rooting

Attack Surface: Linux =< Android

e Remember: Android is based on Linux

* Any Linux kernel vulnerability is automatically inherited

e October 2011: Researchers demonstrate 2.6.35 priv esc.

 Additionally, Android may contain idiosyncratic bugs

» October 2011: Researchers bypass security prompts.

 And we don’t know of any 0-days.. Until they’re out.

Booting & Rooting

Rooting will bury content protection

» Android’s content protections disintegrate in face of root

e Any application’s data directory (or code) can be read
 OBBs can be mounted and read
 ASEC containers can be mounted, their keys can be read

« DRM can be bypassed, one way or another.

e Coupled with DEX decompilation, this is a big problem

* Your app can be decompiled, modd’ed and repackaged

* No real way to detect a rooted device from a running app

Android Security

So, overall..

2014 : 7+ major security bugs for Android.

Oh well. Maybe next year?

