
Dalvík and ART

Jonathan Levin

http://NewAndroidBook.com/

http://www.technologeeks.com/

Wait.. Isn’t Android all ART now?

• Well.. Yes, and no.. The actual runtime is ART, but..

– Your applications still compile into Dalvik (DEX) code

– Final compilation to ART occurs on the device, during install

– Even ART binaries have Dalvik embedded in them

– Some methods may be left as DEX, to be interpreted

– Dalvik is much easier to debug than ART.

Preface

What we won’t be discussing

• Dalvik VM runtime architecture*

– Mostly replaced by ART, prominent features removed

– No talk about JIT (ART does AOT)

– No JNI

• Dalvik specific debug settings

– Not really relevant anymore, either

Preface

* - We discuss these aspects later on, in the contex t of ART – but that’s part II

What we will be discussing

• DEX file structure

• DEX code generation

• DEX verification and optimization

• DEX decompilation and reverse engineering

Preface

The Book

“Android Internals: A Confectioner’s Cookbook”

– 深入解析Android操作系统 - Coming in Chinese (by end of 2016)

– Volume I (Available now): Power User’s view

– Volume II (Available once N is out, and ART is final!): Developer’s View

– http://NewAndroidBook.com/TOC.html for detailed Table of Contents

– Unofficial sequel to Karim Yaghmour’s “Embedded Android”, different focus:

• More on the how and why Android frameworks and services work

• More on DEX and ART (this talk is an excerpt from Volume II)

• (presently) only in-depth book on the subject

– http://www.NewAndroidBook.com/ :

• Free and powerful tools

• Articles and bonus materials from Books

– Android Internals & Reverse Engineering: Feb 8th-12th, 2016, NYC

• http://Technologeeks.com/AIRE

Preface

Part I - Dalvík

Dalvík and the Android Architecture

The Dalvík Virtual Machine* is:

� Customized, optimized JVM

- Based on Apache “Harmony” JVM

� Java compiles into DEX code

� 16-bit opcodes

� Register, rather than stack-based

� Not fully J2SE or J2ME compatible

Dalvík

* - Android L replaces Dalvik by the Android RunTime – but does not get rid of it fully (more later)

Bionic

JNI .
Dalvik VM Native

Binaries

Frameworks

Applications

Linux 2.6.21-3.x Kernel

Hardware

Native Libraries

HAL

A Brief History of Dalvík

• Dalvík was introduced along with Android

– Created by Dan Bornstein

– Named after an Icelandic town

• 2.2 (Froyo) brought Just-in-Time compilation

• 4.4 (KitKat) previews ART

• 5.0 (Lollipop) ART supersedes.

– DEX is still alive and well, thank you for asking

Dalvik, Iceland (photo by the author)

Dalvík

Dalvik VM vs. Java

Dalvik vs. Java

• Dalvík is a virtual machine implementation

– Based on Apache Harmony

– Borrows heavily from Java*

• Brings significant improvements over Java, in particular J2ME:

– Virtual Machine architecture is optimized for memory sharing

• Reference counts/bitmaps stored separately from objects

• Dalvik VM startup is optimized through Zygote

• Java .class files are further compiled into DEX.

* - So heavily, in fact, that Oracle still carries S un’s grudge against Google

Reminder: Creating an APK

*.java jar Classes.dex
javac dx

R.java

Resources.arsc

res/*

AndroidManifest

res/*
res/*.*

aapt

app.jar

jar

jarsigner

app.apk

DEX Files

The DEX file format

• The “dx” utility converts multiple .class files to classes.dex
– Script wrapper over java -Xmx1024M -jar ${SDK_ROOT}.../lib/dx.jar

– Java byte code is converted to DEX bytecode
• DEX instructions are 16-bit multiples, as opposed to Java’s 8-bit

– Constant, String, Type and Method pools can be merged
• Significant savings for strings, types, and methods in multiple classes

• Overall memory footprint diminished by about 50%

• DEX file format fully specified in Android Documentation

DEX Files

signature

The DEX file format

DEX Files

Magic

checksum

File size Header size

Endian tag Link size

Link offset Map offset

String IDs Size String IDs offset

Type IDs Size Type IDs offset

Proto IDs Size Proto IDs offset

Field IDs Size Field IDs offset

Classdef IDs Size Classdef IDs offset

Data Size Data offset

DEX Magic header ("dex\n“ and version (“035 “)

Adler32 of header (from offset +12)

SHA-1 hash of file (20 bytes)

Total file size Header size (0x70)

0x12345678, in little or big endian form Unused (0x0)

Unused (0x0) Location of file map

Number of String entries

Number of Type definition entries

Number of prototype (signature) entries)

Number of method ID entries

Number of Class Definition entries

Data (map + rest of file)

Method IDs Size MethodIDs offset

Number of field ID entries

The DEX file format

DEX Files

Type Implies Size Offset

0x0 DEX Header 1 (implies Header Size) 0x0

0x1 String ID Pool Same as String IDs size Same as String IDs offset

0x2 Type ID Pool Same as Type IDs size Same as String IDs offset

0x3 Prototype ID Pool Same as Proto IDs size Same as ProtoIDs offset

0x4 Field ID Pool Same as Field IDs size Same as Field IDs offset

0x5 Method ID Pool Same as Method IDs size Same as Method IDs offset

0x6 Class Defs Same as ClassDef IDs size Same as ClassDef IDs offset

0x1000 Map List 1 Same as Map offset

0x1001 Type List List of type indexes (from Type ID Pool)

0x1002

0x1003

Annotation set

Annotation Ref

Used by Class, method and field annotations

0x2000 Class Data Item For each class def, class/instance methods and fields

0x2001 Code DexCodeItems – contains the actual byte code

0x2002 String Data Pointers to actual string data

0x2003 Debug Information Debug_info_items containing line no and variable data)

0x2004 Annotation Field and Method annotations

0x2005 Encoded Array Used by static values

0x2006 Annotations Directory Annotations referenced from individual classdefs

signature

Magic

checksum

File size Header size

Endian tag Link size

Link offset Map offset

String IDs Size String IDs offset

Type IDs Size Type IDs offset

Proto IDs Size Proto IDs offset

Field IDs Size Field IDs offset

Classdef IDs Size Classdef IDs offset

Data Size Data offset

Method IDs Size MethodIDs offset

Looking up classes, methods, etc.

• Internally, DEX instructions refer to Indexes (in pools)

• To find a method:
– DexHeader’s Method IDs offset points to an array of MethodIDs

– Each method ID points to a class index, prototype index and method name

• To find a field:
– DexHeader’s Field Ids offset points to an array of FieldIDs

– Each Field ID points to a class index, type index, and the field name

• To get a class:
– DexHeader’s Class Defs Ids offset points to an array of ClassDefs

– Each ClassDef points to superclass, interface, and class_data_item

– Class_data_item shows # of static/instance fields, direct/virtual methods

– Class_data_item is followed by DexField[], DexMethod[] arrays
• DexField, DexMethod point to respective indexes, as well as class specific access flags

DEX Files

DEX Files

Finding a class’s method code
class_idx

access_flags

superclass_idx

Interfaces_off

source_file_idx

annotations_off

class_data_off

static_values_off

Index of the class’ type id, from Type ID pool

ACC_PUBLIC, _PRIVATE, _PROTECTED, _STATIC, _FINAL, etc. Etc..

Index of the superclass’ type id, from Type ID pool

Offset of type_list containing this class’ implemented interface, if any

Index of the source file name, in String pool

Offset of an annotations_directory_item for this class

Offset of this class’s class_data_item

Offset to initial values of any fields defined as static (i.e. Class)

access_flags and static_values_off particulary useful for fuzzing/patching classes

DEX Files

of static (class) fields

of instance fields

Field idx (diff) Access flags

Finding a class’s method code

of direct methods

of virtual methods

...

Method idx (diff) Access flags

...

Code Offset

....

(II)

(static + instance field count) x encoded_field

(direct + virtual count) x encoded_method

class_idx

access_flags

superclass_idx

Interfaces_off

source_file_idx

annotations_off

class_data_off

static_values_off

Class_data_item fields are all ULEB128 encoded (*sigh*)

class_data_item

ClassDef Item

DEX Files

of static (class) fields

of instance fields

Field idx (diff) Access flags

Finding a class’s method code

of direct methods

of virtual methods

...

Method idx (diff) Access flags

...

(III)
F

ro
m

 C
la

ss
D

e
f

Code Offset

of registers used by code item

of words used by in parameters

of words used by out parameters

of try items (try/catch blocks)

Offset of debug_info_items

of instructions (x 16-bit)

... Actual DEX ByteCode is here ...

class_data_item

code_item

The DEX Bytecode

• The Android Documentation is good, but lacking

– Bytecode instruction set

– Instruction formats

• No documentation on optimized code

– ODEX codes (used in 0xE3-0xFF) are simply marked as “unused”

• Not yet updated to reflect ART DEX changes (still undocumented)

– DEX opcode 0x73 claimed by return-void-barrier

– ODEX codes 0xF2-0xFA are moved to 0xE3-0xEB. 0xEC-0xFF now unused

DEX Bytecode

The DEX Bytecode

• VM Architecture allows for up to 64k registers

– In practice, less than 16 are actively used

• Bytecode is method, field, type and string aware

– Operands in specific instructions are IDs from corresponding pools

• Bytecode is also primitive type-aware

– Instructions support casting, as well as specific primitive types

• DEX bytecode is strikingly similar to Java bytecode

– Allows for easy de/re-compilation back and forth to/from java

DEX Bytecode

DEX vs. Java

• Java VM is stack based, DEX is register based
– Operations in JVM use stack and r0-r3; Dalvik uses v0-v65535

– Stack based operations have direct register-base parallels

– Not using the stack (= RAM, via L1/L2 caches) makes DEX somewhat faster.

• Java Bytecode is actually more compact than DEX
– Java instructions take 1-5 bytes, DEX take 2-10 bytes (in 2-byte multiples)

• DEX bytecode is more suited to ARM architectures
– Straightforward mapping from DEX registers to ARM registers

• DEX supports bytecode optimizations, whereas Java doesn’t
– APK’s classes.dex are optimized before install, on device (more later)

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

60-66:sget-*

52-58:iget-*

b2:getstatic

b4:getfield

Read a static or instance variable

67-6d:sput

59-5f:iput

b3:putstatic

b5:putfield

Write a static or instance variable

6e: invoke-virtual

6f: invoke-super

70: invoke-direct

71: invoke-static

72: invoke-interface

b6: Invokevirtual

ba: invokedynamic

b7: invokespecial

b8: Invokestatic

b9: Invokeinterface

Call a method

20: instance-of c1: instanceof Return true if obj is of class

1f: check-cast c0: checkcast Check if a type cast can be performed

bb:new 22: new-instance New (unconstructed) instance of object

DEX vs. Java Bytecode

Class, Method and Field operators

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

32..37: if-*

38..3d: if-*z

a0-a6: if_icmp*

99-9e: if*

Branch on logical

2b: packed-switch ab: lookupswitch Switch statement,

2c: sparse-switch aa: tableswitch Switch statement

28: goto

29: goto/16

30: goto/32

a7: goto

c8: goto_w

Jump to offset in code

27: throw bf:athrow Throw exception

DEX vs. Java Bytecode

Flow Control instructions

DEX vs. Java Bytecode

DEX Opcode Java Bytecode Purpose

12-1c: const* 12:ldc

13: ldc_w

14: ldc2_w

Define Constant

21: array-length be: arraylength Get length of an array

23: new-array bd: anewarray Instantiate an array

24-25: filled-new-array[/range]

26: fill-array-data

N/A Populate an array

DEX vs. Java Bytecode

Data Instructions

Arithmetic instructions are, likewise, highly similar

DEX vs. Java Bytecode

DEX vs. Java Bytecode

• Example: A “Hello World” activity:

DEX vs. Java Bytecode

DEX to Java

• It comes as no surprise that .dex and .class are isomorphic

• DEX debug items map DEX offsets to Java line numbers

• Dex2jar tool can easily “decompile” from .dex back to a .jar

• Standard Practice:

• Extremely useful for reverse engineering

– Even more so useful for malice and mischief

Decompilation

*.java jar Classes.dex

Source code:

- : no comments

+ : nicely indented

Single JAR file with

multiple .class files

dex2jarJAD, DJ-, etc

javac dx

DEX file from a given .apk

DEX to Java

*.java jar Classes.dex

Source code:

- : no comments

+ : nicely indented

Single JAR file with

multiple .class files

javac dx

dex2jarJAD, DJ-, etc

• Flow from DEX to JAVA is bidirectional, meaning that an attacker can:

• Decompile your code back to Java

• ASEC/OBB “solutions” for this fail miserably when target device is rooted.

Decompilation

• Remove annoyances like ads, registration

• Uncover sensitive data (app logic, or poorly guarded secrets)

• Replace certain classes with others, potentially malicious ones

• Recompile back to JAR, then DEX

• Put cloned/trojaned version of your app on Play or another market

DEX file from a given .apk

Deconstructing an APK

R.java

Resources.arsc

res/*

AndroidManifest

res/*
res/*.*

aapt

app.jar

Jar xvf

jarsigner

app.apk

DEX Files

*.java Classes.dex
javac dx

dex2jarJAD, DJ-, etc

aapt d xmltree

jar

DEX Obfuscation

• Quite a few DEX “obfuscators” exist, with different approaches:

– Functionally similar to binutils’ strip, either java (ProGuard) or sDEX

• Rename methods, field and class names

• Break down string operations so as to “chop” hard-coded strings, or encrypt

• Can use dynamic class loading (DexLoader classes) to impede static analysis

– Can add dead code and dummy loops (at minor impact to performance)

– Can also use goto into other instructions (or switches, e.g. DexLABS)

DEX Obfuscation and Optimization

• In practice, quite limited, due to:
– Reliance on Android Framework APIs (which remain unobfuscated)

– JDWP and application debuggability at the Java level

– If Dalvik can execute it, so can a proper analysis tool (e.g. IDA, dextra)

– Popular enough obfuscators (e.g. DexGuard) have de-obfuscators...

• ... Which is why JNI is so popular

root@android:/data/dalvik-cache # ls -s
total 28547
24 system@app@ApplicationsProvider.apk@classes.dex
1359 system@app@Browser.apk@classes.dex
958 system@app@Contacts.apk@classes.dex
625 system@app@ContactsProvider.apk@classes.dex
99 system@app@DeskClock.apk@classes.dex
795 system@app@DownloadProvider.apk@classes.dex
13 system@app@DrmProvider.apk@classes.dex
...
root@android# file system\@app\@LatinIME.apk\@classes.dex
system@app@LatinIME.apk@classes.dex: Dalvik dex file (optimized for host) version 036

DEX Optimization (dexopt)

• Pre-5.0, installd runs dexopt on APK, during installation

– Extracts the APK’s classes.dex

– Performs runtime verification and optimization

– Plops optimized DEX file in /data/dalvik-cache

• ART still optimizes DEX, but uses dex2oat instead (q.v. Part II)
– ODEX files are actually now OAT files (ELF shared objects)

– Actual DEX payload buried deep inside

DEX Obfuscation and Optimization

shell@hammerhead:/ $ dexopt
Usage:

Short version: Don't use this.

Slightly longer version: This system-internal tool is used to
produce optimized dex files. See the source code for details.

DEX Optimization (dexopt)

• dexopt is user-friendly ... But only for the right user (installd)

• The program runs a Dalvik VM with special switches

DEX Obfuscation and Optimization

DEX Optimization (dexopt)

• What happens during optimization?

– Bytecode verification: Deducing code paths, register mapss, and precise GC

– Wrapping with ODEX header (for optimized data/dependency tables)

– Opcodes replaced by quick opcode variants*

DEX Opcode ODEX Opcode Optimization

0e: return-void 73: return-void-barrier Barrier (in constructors)

52:iget e3: iget-quick Use byte offset for field,

eliminating costly lookup,

and merge primitive

datatypes into a 32-bit

(wide) instruction, reducing

overall code size.

53: iget-wide e4: iget-wide-quick

54: iget-object e5:iget-object-quick

59: iput e6: iput-quick

5a: iput-wide e7: iput-wide-quick

5b: iput-object e8: iput-object-quick

6e: invoke-virtual e9/ea: invoke-virtual-quick[/range] Vtable, eliminating lookup

* - Pre-ART optimization also added execute-inline, a s well as –volatile variants for iget/iput – but tho se have been removed

DEX Obfuscation and Optimization

art/compiler/dex/dex_to_dex_compiler.cc

DEX Optimization (dexopt)

DEX Obfuscation and Optimization

Example: Reversing DEX

• You can use the AOSP-supplied DEXDUMP to disassemble DEX

(~)$ $SDK_ROOT/build-tools/android-4.4.2/dexdump
dexdump: no file specified
Copyright (C) 2007 The Android Open Source Project

dexdump: [-c] [-d] [-f] [-h] [-i] [-l layout] [-m] [-t tempfile] dexfile...

-c : verify checksum and exit
-d : disassemble code sections
-f : display summary information from file header
-h : display file header details
-i : ignore checksum failures
-l : output layout, either 'plain' or 'xml'
-m : dump register maps (and nothing else)
-t : temp file name (defaults to /sdcard/dex-temp-*)

Practical Example

(Interactive Demo)

Example: Reversing DEX

Usage: dextra [...] _file_
Where: _file_ = DEX or OAT file to open
And [...] can be any combination of:

-c: Only process this class
-m: show methods for processed classes (implies -c *)
-f: show fields for processed classes (implies -c *)
-p: Only process classes in this package
-d: Disassemble DEX code sections (like dexdump does - implies -m)
-D: Decompile to Java (new feature, still working on it. Implies -m)

Or one of:
-h: Just dump file header
-M [_index_]: Dump Method at _index_, or dump all methods
-F [_index_]: Dump Field at _index_, or dump all fields
-S [_index_]: Dump String at _index_, or dump all strings
-T [_index_]: Dump Type at _index_, or dump all types

OAT specific switches:
-dextract Extract embedded DEX content from an OAT files

And you can always use any of these output Modifiers:
-j: Java style output (default is JNI, but this is much better)
-v: verbose output
-color: Color output (can also set JCOLOR=1 environment variable)

• Alternatively, use DEXTRA (formerly Dexter)

Practical Example

(Interactive Demo)

Example: Reversing DEX

• Dextra has (for the moment, medium) support for decompilation (working on it)

(~)$ JCOLOR=1 dextra –d –D Tests/classes.dex
...

public class com.technologeeks.BasicApp.MainActivity
extends android.app.Activity {

public void <init> () // Constructor
{
result = android.app.Activity.<init>(v0); // (Method@0)
}

public void onCreate (android.os.Bundle)
{
v0 = java.lang.System.out; // (Field@4)
v1 = “It Works!\n"; // (String@3)
result = java.io.PrintStream.println(v0, v1); // (Method@11)
result = android.app.Activity.onCreate(v2, v3); // (Method@1)
v0 = 0x7f030018;
result = com.technologeeks.BasicApp.MainActivity.

setContentView(v2, v0); // (Method@5)
}
} // end class com.technologeeks.BasicApp.MainActivity

Practical Example

(Interactive Demo)

So why is Dalvik deprecated?

• JIT is slow, consuming both cycles and battery power

• Garbage collection (esp. GC_FOR_ALLOC) causes hangs/jitter

• Dalvik VM is 32-bit, and can’t benefit from 64-bit architecture

– And everybody* wants 64-bit, now that iOS has it...

• KitKat was the first to introduce ART, And Lollipop adopts it

– For more details on ART Internals, stick around for Part II..

* - Well, maybe everybody except Qualcomm ... Or .. On second thought, maybe they do, too ?

Summary

Take Away

• DEX is a Dangerous Executable format...

– Risks to app developers are significant, with no clear solutions

– (And we haven’t even mentioned fun with DEX fuzzing)

– (And if we do mention fuzzing – Check $AOSP_SRC/art/tools/dexfuzz!)

• DEX isn’t DEAD yet – even with ART:

– Still buried deep inside those OAT files

– FAR easier to reverse engineer embedded DEX, than do so for OAT

Summary

Parts we didn’t discuss here are in the book(Volume II)

References

• 2014 - Qualcomm Mobile Security Summit – “ Android App “Protection” “ –

“diff”/”case”

• 2015 - Defcon XXIII – “Offsensive & Defensive Android Reverse Engineering” –

“diff”/”case”/Fenton

Greets
• Jon Sawyer (“justin case”) - @jcase

Dalvik and ART

Jonathan Levin

http://NewAndroidBook.com/

http://www.technologeeks.com

What we won’t be discussing

• The nitty-gritty, molecular-level internals of ART

– Code Generation down to the assembly level

– LLVM integration

– Internal memory structures

• Because...

A) This level has only recently meta-stabilized

(ART in 5.0 is not compatible with 4.4.x’s, or the preview releases.

B) We don’t really have time to go that deep (71 Mins to go!)

C) There’s a chapter in the book for that*

q.v. www.newAndroidBook.com (tip: Follow RSS or @Technologeeks)

Preface

* - Well, at least there will be. Still working on updating that chapter with a massive rewrite, unfortunately..

What we will be discussing

• High level architecture and principles

• ART and OAT file structure

• ART code generation at a high level view

• ART reversing

• Debugging in ART (high-level)

Preface

Part II - ART

The Android RunTime

• ART was introduced in KitKat (4.4):
– Available only through developer options

– Declared to be a “preview” release, use-at-your-own-risk

– Very little documentation, if any

– Some performance reviews (e.g. AnandTech), but only for Preview Release

• In Lollipop, ART becomes the RunTime of choice
– Supersedes (all but buries) Dalvik

– Breaks compatibility with older DEX, as well as itself (in preview version)

– And still – very little documentation, if any

• Constantly evolving, through Marshmallow
– Major caveat: Often changes in between Android minor versions

– (Android re-“Optimizes Apps” every time you update)

Introducing: ART

Dalvik Disadvantages

Introducing: ART

• ART was designed to address the shortcomings of Dalvik:

– Virtual machine maintenance is expensive

• Interpreter/JIT simply aren’t efficient as native code

• Doing JIT all over again on every execution is wasteful

• Maintenance threads require significantly more CPU cycles

• CPU cycles translate to slower performance – and shorter battery life

– Dalvik garbage collection frequently causes hangs/pauses

– Virtual machine architecture is 32-bit only

• Android is following iOS into the 64-bit space

... Become ART Advantages

Introducing: ART

• ART moves compilation from Just-In-Time to Ahead-Of-Time

– Virtual machine maintenance is expensive

• Interpreter/JIT simply aren’t efficient as native code

• Doing JIT all over again on every execution is wasteful

• Maintenance threads require significantly more CPU cycles

• CPU cycles translate to slower performance – and shorter battery life

– Dalvik garbage collection frequently causes hangs/pauses

– Virtual machine architecture is 32-bit only

• Android is following iOS into the 64-bit space

(Some issues still exist here)

ART compiles to native

Just ONCE, AOT

Less threads

Less overhead cycles

not as

GC Parellizable (foreground/background),

Non-blocking (i.e. less GC_FOR_ALLOC)

Main Idea of ART - AOT

Introducing: ART

• Actually, compilation can be to one of two types:

– QUICK: Native Code

– Portable: LLVM Code

• In practice, preference is to compile to Native Code

– Portable implies another layer of IR (LLVM’s BitCode)

The Android RunTime

• ART uses not one, but two file formats:

– .art:

• Only one file, boot.art, in /system/framework/[arch] (arm, arm64, x86_64)

– .oat:

• Master file, boot.oat, in /system/framework/[arch] (arm, arm64, x86_64)

• .odex files: NO LONGER Optimized DEX, but OAT!

– alongside APK for system apps/frameworks

– /data/dalvik-cache for 3rd-party apps

– Still uses “.odex” extension, now file format is ELF/OAT.

ART Files

ART files

• The ART file is a proprietary format

– Poorly documented (which is why I wrote the book)

– changed format internally repeatedly (which is why book is so delayed)

– Not really understood by oatdump, either.. (which is why I wrote dextra)

– And.. changed again (from 009 to 017....) (which is why I keep updating it)

• ART file maps in memory right before OAT, which links with it.

• Contains pre-initialized classes, objects, and support structures

ART Files

ART Files

Creating ART (and OAT)

• ART/OAT files are created (on device or on host) by dex2oat

• Command line saved inside OAT file’s key value store:

shell@flounder ~ dextra –h /system/framework/arm64/boot.oat
..
Key value store Len: 2318

Key: debuggable Value: false
Key: dex2oat-cmdline Value: --runtime-arg -Xms64m --runtime-arg -Xmx64m --image-

classes=frameworks/base/preloaded-classes
--dex-file=out/target/common/obj/JAVA_LIBRARIES/core-libart_intermediates/javalib.jar
–dex-file=out/target/common/obj/JAVA_LIBRARIES/conscrypt_intermediates/javalib.jar
--dex-file=out/target/common/obj/JAVA_LIBRARIES/okhttp_intermediates/javalib.jar
..
--dex-file=out/target/common/obj/JAVA_LIBRARIES/org.apache.http.legacy.boot_intermediates/javalib.jar
--dex-location=/system/framework/core-libart.jar
...
--dex-location=/system/framework/org.apache.http.legacy.boot.jar
--oat-symbols=out/target/product/flounder/symbols/system/framework/arm64/boot.oat
--oat-file=out/target/product/flounder/dex_bootjars/system/framework/arm64/boot.oat
--oat-location=/system/framework/arm64/boot.oat
--image=out/target/product/flounder/dex_bootjars/system/framework/arm64/boot.art --base=0x70000000
--instruction-set=arm64 --instruction-set-variant=denver64 --instruction-set-features=default
--android-root=out/target/product/flounder/system --include-patch-information --runtime-arg
-Xnorelocate --no-generate-debug-info

Key: dex2oat-host Value: X86_64
Key: pic Value: false

The ART file format

checksum

Image begin Image size

Bitmap offset Bitmap size

OAT begin

OAT Data Begin OAT data end

OAT end Patch Delta

Image Roots

ART Magic header (“art\n“ and version (“xxx “)

Adler32 of header

Load Address of ART file (fixed) File Size

Offset of image bitmap Size of bitmap

Load address of OAT Data (Oat Begin + 0x1000)

Last address of OAT (begin + size)

Address of image roots

Load address of OAT file

Last address of OAT Data

Used in offset patching

Addr of objectArray

..

Count (8)

kResolutionMethod

kImtConflictMethod

kCalleeSaveMethod

Image_roots array (serialized)

kRefsOnlySaveMethod

kRefsAndArgsSaveMethod

kDexCaches

kClassroots

kDefaultImt

ART Files

Compile PIC

art\n 009-012

All fields 32-bit (4 bytes)

checksum

Image begin Image size

Bitmap offset Bitmap size

OAT begin

OAT Data begin OAT data end

OAT end Patch Delta

Image Roots

ART Files

OAT Data begin

Image begin Image size

OAT checksum OAT begin

OAT Data end

OAT end Patch Delta

Image Roots Size of Pointer

Compile_pic

art\n 009-012 art\n 017-???

Compile PIC Objects Offset

Fields Size Methods offset

Methods size Strings Offset

Strings size Bitmap offset

Bitmap size

Objects Size Fields Offset

checksum

Image begin Image size

Bitmap offset Bitmap size

OAT begin

OAT Data begin OAT data end

OAT end Patch Delta

Image Roots

art\n 015

Compile PIC

ART Fields Offset ART Fields Size

Lollipop (5.x) Marshmallow (PR1) Marshmallow (PR2-Release)

... Followed by Image Roots

All fields 32-bit (4 bytes)

Loading the ART file

ART and OAT

The ART file mapping in memory is fixed (as art the .OAT)
root@generic:/ # cat /proc/1088/maps | grep boot
70dbd000-718db000 rw-p 00000000 1f:01 7053 .../system@framework@boot.art
718db000-7338c000 r--p 00000000 1f:01 7054 .../system@framework@boot.oat
7338c000-74844000 r-xp 01ab1000 1f:01 7054 .../system@framework@boot.oat
74844000-74845000 rw-p 02f69000 1f:01 7054 .../system@framework@boot.oat
b5242000-b5243000 r--p 00000000 1f:01 7054 .../system@framework@boot.oat
b5244000-b5271000 r--p 00b1e000 1f:01 7053 .../system@framework@boot.art

morpheus@Forge (~) # dextra ~/Tests/system@framework@boot.art
ART version 0x393030 header detected (header size: ox34, File Size 0xb4b000)
Image Begin: 70dbd000
Image Bitmap: 2d000 @0xb1e000-0xb4b000 (relocated separately from image base)
Patch Delta: 0xdbd000
Checksum: 0x5eae278
OAT file: 0x718db000-0x74845000 (not part of this image)
OAT data: 0x718dc000-0x74843690 (not part of this image)

Defeats the whole purpose of ASLR*, may be (eventually) patched

* - the boot.oat is also pretty big – and executable (ROP gadgets, anyone?)

Example: Inspecting ART

• You can use the AOSP’s oatdump to inspect ART (and OAT) files:

Practical Example

(Interactive Demo)

Usage: oatdump [options] ...
...

--oat-file=<file.oat>: specifies an input oat filename.

--image=<file.art>: specifies an input image filename.

--boot-image=<file.art>: provide the image file for the boot class path.

--instruction-set=(arm|arm64|mips|x86|x86_64): for locating the image

--output=<file> may be used to send the output to a file.

--dump:raw_mapping_table enables dumping of the mapping table.

--dump:raw_mapping_table enables dumping of the GC map.

--no-dump:vmap may be used to disable vmap dumping.

--no-disassemble may be used to disable disassembly.

Usage: oatdump [options] ...
Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art
Example: adb shell oatdump --image=/system/framework/boot.art

....
--list-classes may be used to list target file classes (can be used with filters).

Example: --list-classes
Example: --list-classes --class-filter=com.example.foo

--list-methods may be used to list target file methods (can be used with filters).
Example: --list-methods
Example: --list-methods --class-filter=com.example --method-filter=foo

--symbolize=<file.oat>: output a copy of file.oat with elf symbols included.
Example: --symbolize=/system/framework/boot.oat

--class-filter=<class name>: only dumps classes that contain the filter.
Example: --class-filter=com.example.foo

--method-filter=<method name>: only dumps methods that contain the filter.
Example: --method-filter=foo

--export-dex-to=<directory>: may be used to export oat embedded dex files.
Example: --export-dex-to=/data/local/tmp

--addr2instr=<address>: output matching method disassembled code from relative
address (e.g. PC from crash dump)

Example: --addr2instr=0x00001a3b

• M’s oatdump adds more options:

Example: Inspecting ART

Practical Example

Example: Reversing ART

Zephyr:Dextra morpheus$./dextra
Usage: ./dextra [...] _file_
Where: _file_ = DEX or ART/OAT file to open
And [...] can be any combination of:

-l List contents of file (classes is in dex, oat, or ART)
-c: Only process this class
-m: show methods for processed classes (implies -c *)
-f: show fields for processed classes (implies -c *)
-p: Only process classes in this package
-d: Disassemble DEX code sections (like dexdump does - implies -m)
-D: Decompile to Java (new feature, still working on it. Implies -j -m)

...
OAT specific options:

-h: Just dump file header
-dextract Extract embedded DEX content from an OAT files
-o Display addresses as offsets (useful for file editing/fuzzing)
-delta value Apply Patch delta

ART specific options:
-delta value Apply Patch delta
-deep Deep dump (go into object arrays)

And you can always use any of these output Modifiers:
-j: Java style output (default is JNI, but this is much better)
-v: verbose output
-color: Color output (can also set JCOLOR=1 environment variable)

This is DEXTRA, version 1.64.17 (with proper 5.0-6.0(final) .art/.oat), compiled on Nov 30 2015.
For more details: http://NewAndroidBook.com/tools/dextra.html

• Better option: http://NewAndroidBook.com/tools/dextra (formerly Dexter)

Practical Example

Most of DexTRA’s features eventually end up in oatdump (..keep up the good work, Google!)

Tool comparison
Function Oatdump Dextra

OS support Android only Android

Linux

Mac OS X

Windows (cygwin)

grep(1) friendly No Yes

Colorful output No Yes

Concise syntax No Yes

Open Source Yes. And very messy No (but not as messy ☺)

OAT and ELF

ART and OAT

• OAT files are actually embedded in ELF object files
morpheus@Forge (~)$ file boot.oat
boot.oat: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (GNU/Linux),
dynamically linked, stripped

morpheus@Forge (~)$ readelf -e boot.oat
...
Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .dynsym DYNSYM 70b1e0d4 0000d4 000040 10 A 2 0 4
[2] .dynstr STRTAB 70b1e114 000114 000026 01 A 0 0 1
[3] .hash HASH 70b1e13c 00013c 000020 04 A 1 0 4
[4] .rodata PROGBITS 70b1f000 001000 1ab0000 00 A 0 0 4096
[5] .text PROGBITS 725cf000 1ab1000 14b7690 00 AX 0 0 4096
[6] .dynamic DYNAMIC 73a87000 2f69000 000038 08 A 1 0 4096
[7] .oat_patches LOUSER+0 00000000 2f69038 1148b8 04 0 0 4
[8] .shstrtab STRTAB 00000000 3085388 000045 01 0 0 1

Key/Value Store (Len bytes)

The OAT file format

ART and OAT

Magic

Executable offset

checksum Instruction Set

Ins. Set Features Dex file count

I2I Bridge

I2C Bridge Jni dlsym lookup

Portable IMT Portable Tramp

P2I Bridge

OAT Magic header (“oat\n“ and version (“039 “-”064”)

Offset of Executable (Load Address)

Adler32 of header Underlying architecture (ARM, ARM64, x86, etc.)

Count of Embedded DEX files (told ya DEX is alive)

Interpreter to Compiled Bridge Offset

Portable IMT Conflict Resolution Offset

Portable to Interpreter Bridge Offset

Interpreter-to-Interpreter Bridge Offset

Offset of JNI dlsym() lookup func for dynamic linking

Portable Resolution Trampoline Offset

Quick Gen JNI Tramp Generic JNI Trampoline Offset

Quick IMT Conf. Quick Res Tramp

Q2I Bridge Patch Offset

...removed in 062 ...

Quick to Interpreter Bridge Offset

Key/Value Len

art\n 037-064

Quick IMT Conflict Trampoline Offset Quick Resolution Trampoline Offset

Location (filename)

The OAT DexFile Header

ART and OAT (and DEX..)

Location Len

• Following the OAT header are.. *surprise* - 1..n DEX files!

– Actual value given by DexFileCount field in header

Location Cksum File offset

Classes offset

signature

Magic

checksum

File size Header size

Endian tag Link size

...etc.. Etc..

(q.v. Part 1 of this talk)

Points to array of oat_class_headers

Followed by (possibly) method bitmap

Followed by array of oat_method_headers

Finding DEX in OAT

ART and OAT (And DEX)

• ODEX files will usually have only one (=original) DEX embdded

• BOOT.OAT is something else entirely:

– Some 14 Dex Files – the “Best of” the Android Framework JARs

– Each DEX contains potentially hundreds of classes

morpheus@Forge (~) % dextra Tests/boot.oat | grep DEX
DEX files: 14
DEX FILE 0: /system/framework/core-libart.jar @0xda10 (2132 classes)
DEX FILE 1: /system/framework/conscrypt.jar @0x2cfea8 (166 classes)
DEX FILE 2: /system/framework/okhttp.jar @0x311c14 (179 classes)
DEX FILE 3: /system/framework/core-junit.jar @0x3573f8 (19 classes)
DEX FILE 4: /system/framework/bouncycastle.jar @0x35d36c (824 classes)
DEX FILE 5: /system/framework/ext.jar @0x45dc40 (1017 classes)
DEX FILE 6: /system/framework/framework.jar @0x5a9508 (5858 classes)
DEX FILE 7: /system/framework/framework.jar:classes2.dex @0xef3c34 (1547 classes)
DEX FILE 8: /system/framework/telephony-common.jar @0x11e1b14 (551 classes)
DEX FILE 9: /system/framework/voip-common.jar @0x1369050 (76 classes)
DEX FILE 10: /system/framework/ims-common.jar @0x138e614 (42 classes)
DEX FILE 11: /system/framework/mms-common.jar @0x13a26e8 (1 classes)
DEX FILE 12: /system/framework/android.policy.jar @0x13a28a4 (117 classes)
DEX FILE 13: /system/framework/apache-xml.jar @0x13e4030 (658 classes)

ART Code Generation

• OAT Method headers point to offset of native code

Behind the Scenes of the Runtime

• Each method has a Quick or Portable Method Header
– Contains mapping from virtual register to underlying machine registers

• Each method also has a Quick or Portable Frame Info
– Provides frame size in bytes

– Core register spill mask

– FP register spill mask (largely unused)

• Generated code uses unusual registers

– Especially fond of using LR as call register

– Still saves/restores registers so as not to violate ARM conventions

ART Code Generation

• ART supports multiple architectures (x86, ARM/64, MIPS)

Behind the Scenes of the Runtime

• Compiler is a layered architecture*:

Front End (MIR)

Back End (LIR)

x86 X86_64 ARM ARM64 MIPS

High Level optimizations (e.g. GC)

Architecture specific considerations (e.g. Register maps)

* - Using Portable (LLVM) adds another level, with LLVM BitCode – which is outside the scope of this presentation

Example: AM.ODEX

Practical Example

private void runKillAll() throws Exception {
mAm.killAllBackgroundProcesses();

}

frameworks/base/cmds/am/src/com/android/commands/am /Am.java

15: void com.android.commands.am.Am.runKillAll() (dex_method_idx=164)
0x0000: iget-object v0, v1,

Landroid/app/IActivityManager; com.android.commands.am.Am.mAm
0x0002: invoke-interface {v0},

void android.app.IActivityManager.killAllBackgroundProcesses()
0x0005: return-void

• For a practical example, we consider am.odex
– Simple class, providing basic ActivityManager Command Line Interface

• We pick a simple method – runKillAll()
– One line method, demonstrating botch instance field access and method invocation

DEX code

Practical Example

0x00018d28: f5bd5c00 subs r12, sp, #8192
0x00018d2c: f8dcc000 ldr.w r12, [r12, #0]
suspend point dex PC: 0x0000
GC map objects: v1 (r6)

// Prolog: Stack setup, save registers
0x00018d30: e92d40e0 push {r5, r6, r7, lr}
0x00018d34: b084 sub sp, sp, #16
0x00018d36: 1c07 mov r7, r0
0x00018d38: 9000 str r0, [sp, #0]
0x00018d3a: 1c0e mov r6, r1
0x00018d3c: 6975 ldr r5, [r6, #20]
0x00018d3e: f04f0c11 mov.w r12, #17 // Note - 17
0x00018d42: 1c29 mov r1, r5
0x00018d44: 6808 ldr r0, [r1, #0]
suspend point dex PC: 0x0002 // invoke-interface {v0}, ...killAllBackground..
GC map objects: v0 (r5), v1 (r6)
0x00018d46: f8d000f4 ldr.w r0, [r0, #244]
0x00018d4a: f8d0e028 ldr.w lr, [r0, #40] ; Method at offset 40
0x00018d4e: 47f0 blx lr ; Execute method (note usage of lr)
suspend point dex PC: 0x0002
GC map objects: v0 (r5), v1 (r6)
0x00018d50: 3c01 subs r4, #1 ; Check VM Thread State
0x00018d52: f0008003 beq.w +6 (0x00018d5c)
// Epilog: Stack teardown, restore registers
0x00018d56: b004 add sp, sp, #16
0x00018d58: e8bd80e0 pop {r5, r6, r7, pc}
0x00018d5c: f8d9e230 ldr.w lr, [r9, #560] ; pTestSuspend
0x00018d60: 47f0 blx lr ; call pTestSuspend
suspend point dex PC: 0x0005
0x00018d62: e7f8 b -16 (0x00018d56)

oatdump –-oat-file=/system/frameworks/arm/am.odex

AM.ODEX
(arm)

Practical Example

0x0001c708: d1400be8 sub x8, sp, #0x2000 (8192)
0x0001c70c: f9400108 ldr x8, [x8]
suspend point dex PC: 0x0000 // iget-object v0, v1...
GC map objects: v1 (r21)
0x0001c710: d100c3ff sub sp, sp, #0x30 (48)
0x0001c714: a90157f4 stp x20, x21, [sp, #16]
0x0001c718: a9027bf6 stp x22, x30, [sp, #32]
0x0001c71c: aa0003f6 mov x22, x0
0x0001c720: b90003e0 str w0, [sp]
0x0001c724: aa0103f5 mov x21, x1
0x0001c728: b94016b4 ldr w20, [x21, #20]
0x0001c72c: 52800231 movz w17, #0x11 // 0x11 - 17
0x0001c730: aa1403e1 mov x1, x20
0x0001c734: b9400020 ldr w0, [x1]
suspend point dex PC: 0x0002 // invoke-interface {v0}, ...killAllBackground..
GC map objects: v0 (r20), v1 (r21)
0x0001c738: b9413000 ldr w0, [x0, #304] ; note w0 (32 bit register usage)
0x0001c73c: f940141e ldr x30, [x0, #40] ; method at offset 40
0x0001c740: d63f03c0 blr x30
suspend point dex PC: 0x0002
GC map objects: v0 (r20), v1 (r21)
0x0001c744: 71000673 subs w19, w19, #0x1 (1) // Check VM Thread State
0x0001c748: 540000a0 b.eq #+0x14 (addr 0xbeaf84b4)
0x0001c74c: a94157f4 ldp x20, x21, [sp, #16]
0x0001c750: a9427bf6 ldp x22, x30, [sp, #32]
0x0001c754: 9100c3ff add sp, sp, #0x30 (48)
0x0001c758: d65f03c0 ret
0x0001c75c: f941f65e ldr x30, [x18, #1000]
0x0001c760: d63f03c0 blr x30
suspend point dex PC: 0x0005
0x0001c764: 17fffffa b #-0x18 (addr 0xbeaf84b8)

oatdump –-oat-file=/system/frameworks/arm64/am.odex

AM.ODEX
(arm64)

Practical Example

0x0001bb18: 85842400E0FFFF test eax, [rsp + -8192]
suspend point dex PC: 0x0000
GC map objects: v1 (r5)
// Prolog: Stack setup, save registers
0x0001bb1f: 4883EC28 subq rsp, 40
0x0001bb23: 48895C2410 movq [rsp + 16], rbx
0x0001bb28: 48896C2418 movq [rsp + 24], rbp
0x0001bb2d: 4C89642420 movq [rsp + 32], r12
0x0001bb32: 4C8BE7 movq r12, rdi
0x0001bb35: 893C24 mov [rsp], edi
0x0001bb38: 488BEE movq rbp, rsi
0x0001bb3b: 8B5D14 mov ebx, [rbp + 20]
0x0001bb3e: B811000000 mov eax, 17 // Again, 17
0x0001bb43: 488BF3 movq rsi, rbx
0x0001bb46: 8B3E mov edi, [rsi]
suspend point dex PC: 0x0002
GC map objects: v0 (r3), v1 (r5)
0x0001bb48: 8BBF34010000 mov edi, [rdi + 308]
0x0001bb4e: FF5728 call [rdi + 40] ; Again, offset 40
suspend point dex PC: 0x0002
GC map objects: v0 (r3), v1 (r5)
0x0001bb51: 6566833C250000000000 cmpw gs:[0], 0 ; state_and_flags
0x0001bb5b: 7514 jnz/ne +20 (0x0001bb71)
// Epilog: Stack teardown, restore registers
0x0001bb5d: 488B5C2410 movq rbx, [rsp + 16]
0x0001bb62: 488B6C2418 movq rbp, [rsp + 24]
0x0001bb67: 4C8B642420 movq r12, [rsp + 32]
0x0001bb6c: 4883C428 addq rsp, 40
0x0001bb70: C3 ret
0x0001bb71: 65FF1425E8030000 call gs:[1000] ; pTestSuspend
suspend point dex PC: 0x0005
0x0001bb79: EBE2 jmp -30 (0x0001bb5d)
0x0001bb7b: 0000 addb [rax], al ; padding (not executed)

oatdump –-oat-file=/system/frameworks/x86_64/am.ode x

AM.ODEX
(x86_64)

Some lessons

• Base code is DEX – so VM is still 32-bit

– No 64-bit registers or operands - so mapping to underlying arch isn’t always 64-bit

– There are actually a few 64-bit instructions (e.g. Move-wide) but most DEX code doesn’t use them)

• Generated code isn’t always that efficient

– Not on same par as an optimizing native code compiler

– Likely to improve with LLVM optimizations

• Overall code flow (determined by MIR optimization) is same

• Garbage collection, register maps, likewise same

• Caveats:

– Not all methods guaranteed to be compiled

– Reversing can be quite a pain...

Behind the Scenes of the Runtime

Caveat

• DEXTRA is still a work in progress
– No disassembly of native/portable code (yet), Just DEX (but with decompilation!)

• Tool MAY Crash – especially on ART files

– It would help if Google’s own oatdump was:

A) Actually readable code, with C structs instead of C++ serializations!

B) Actually worked and didn’t crash so frequently

• Please use and abuse dextra, and file bug reports

– Check frequently for updates (current tool version is presently 1.17.64)

– http://www.newandroidbook.com/tools/dextra.html

Practical Example

ART Runtime threads

• The runtime uses several worker threads, which it names:

Following the pattern demonstrated to enumerate prctl(2) named threads:
root@generic:/proc/$app_pid/task # for x in *; do grep Name $x/status; done
Name: android.browser # Main (UI) thread, last 16 chars of classname
Name: Signal Catcher # Intercepts SIGQUIT and SIGUSR1 signals
Name: JDWP # Java Debug Wire Protocol
Runtime::StartDaemonThreads() calls libcore’s java.lang.Daemons for these
Name: ReferenceQueueD # Reference Queue Daemon (as in Dalvik)
Name: FinalizerDaemon # Finalizer Daemon (as in Dalvik)
Name: FinalizerWatchd # Finalizer Watchdog (as in Dalvik)
Name: HeapTrimmerDaem # Heap Trimmer
Name: GCDaemon # Garbage Collection daemon thread
Additional Thread Pool Worker threads may be started
...

Behind the Scenes of the Runtime

ART Runtime threads

Behind the Scenes of the Runtime

• The Daemon Threads are started in Java, by libcore

– Daemon class wraps thread class, provides singleton INSTANCE

– Do same basic operations as they did in “classic” DalvikVm

• Libart subtree in libcore implementation slightly different

ART Runtime threads

Behind the Scenes of the Runtime

• The Signal Catcher thread responds to SIGQUIT and SIGUSR1:

– SIGUSR1 forces garbage collection:

– And outputs to the Android logs as I/art with the PID signaled:

– SIGQUIT doesn’t actually quit, but dumps statistics to /data/anr/traces.txt

• Statistics are appended, so it’s a bad idea to delete the file while system is running

void SignalCatcher::HandleSigUsr1() {
LOG(INFO) << "SIGUSR1 forcing GC (no HPROF)";
Runtime::Current()->GetHeap()->CollectGarbage(false);

}

runtime/signal_catcher.cc

I/art (806): Thread[2,tid=812,WaitingInMainSignalCatcherLoop,Thread*=0xaee9d400,
peer=0x12c00080, "Signal Catcher"]: reacting to signal 10

I/art (806): SIGUSR1 forcing GC (no HPROF)
I/art (806): Explicit concurrent mark sweep GC freed 16(1088B) AllocSpace objects,

0(0B) LOS objects, 63% free, 297KB/809KB, paused 745us total 238.066msss

ART Statistics

----- pid ... at 2014-11-17 20:22:55 -----
Cmd line: com.android.dialer
ABI: arm # 32-bit ARMv7 architecture
Build type: optimized
Loaded classes: 3596 allocated classes
Intern table: 4639 strong; 239 weak
JNI: CheckJNI is on; globals=246
Libraries: ... # List of native runtime libraries from /system/lib (possibly vendor)
Heap: 63% free, currentKB/maxKB; number objects
Dumping cumulative Gc timings
Start Dumping histograms for 247 iterations for concurrent mark sweep
... Detailed garbage collection histograms
Done Dumping histograms
Total time spent in GC: 31.345s
Mean GC size throughput: 831KB/s
Mean GC object throughput: 3366.85 objects/s
Total number of allocations 142890
Total bytes allocated 25MB
Free memory 512KB
Free memory until GC 512KB
Free memory until OOME 63MB
Total memory 807KB
Max memory 64MB
Total mutator paused time: 625.069ms
Total time waiting for GC to complete: 37.614ms

/data/anr/traces.txt

Behind the Scenes of the Runtime

ART Statistics

DALVIK THREADS (##):
"main" prio=5 tid=1 Native # Native, Waiting, or Runnable
| group="main" sCount=1 dsCount=0 obj=0x7485b970 self=0xb5007800
| sysTid=806 nice=0 cgrp=apps/bg_non_interactive sched=0/0 handle=0xb6f5fec8
| state=S schedstat=(260000000 14200000000 134) utm=10 stm=16 core=0 HZ=100
| stack=0xbe4e4000-0xbe4e6000 stackSize=8MB
| held mutexes=
kernel: sys_epoll_wait+0x1d4/0x3a0 # (wchan)
kernel: sys_epoll_pwait+0xac/0x13c # (system call invoked) <------+
kernel: ret_fast_syscall+0x0/0x30 # (entry point) |
native: #00 pc 00039ed8 /system/lib/libc.so (__epoll_pwait+20) -------+
native: #01 pc 00013abb /system/lib/libc.so (epoll_pwait+26)
native: #02 pc 00013ac9 /system/lib/libc.so (epoll_wait+6)

Managed stack frames (if any) follow (from Java’s printStackTrace())
at android.os.MessageQueue.nativePollOnce(Native method)
at android.os.MessageQueue.next(MessageQueue.java:143)
at android.os.Looper.loop(Looper.java:122)
at android.app.ActivityThread.main(ActivityThread.java:5221)
at java.lang.reflect.Method.invoke!(Native method)
at java.lang.reflect.Method.invoke(Method.java:372)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:899)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:694)

... (for as many as ## threads, above)

/data/anr/traces.txt

Behind the Scenes of the Runtime

ART Memory Allocation

• ART has not one, but two underlying allocators:

– DLMalloc: The traditional libc allocator, from Bionic

• Not optimized for threads (uses a global memory lock)

• Inter-thread conflicts arise, as do potential collisions with GC

– ROSalloc: Runs-of-Slots-Allocator (art/runtime/gc/allocator/rosalloc.h)

• Allows thread-local-storage region for reasonably small objects

– Separate Thread Local bit map used, which GC can access with no lock

• Supports “Bulk Free”:

– GC first marks slots to free (with no lock)

– Bulk free operation uses one lock, and frees all slots with indicated bits

• Larger objects can be locked independently of others

Behind the Scenes of the Runtime

ART Garbage Collection

• ART uses not one, but two Garbage Collectors:

– The Foreground collector

– The Background collector

• There are also no less than eight garbage collection algorithms:

Behind the Scenes of the Runtime

Mark/Sweep

Concurrent Mark/Sweep

Semi-Space, Mark/Sweep

Generation Semi-Space

Mark Compact Collector

Heap Trimming Collector

Concurrent Copying Collector

Homogenous Space Compactor

Takeaways

• ART is a far more advanced runtime architecture
– Brings Android closer to iOS native level performance (think: Objective-C*)

* - Unfortunately, iOS is moving away again with SWIFT and METAL both offering significant performance boosts over OBJ-C

• Vestiges of DEX still remain, to haunt performance
– DEX Code is still 32-bit

• Very much still a shifting landscape
– Internal structures keep on changing – Google isn’t afraid to break compatibility

– LLVM integration likely to only increase and improve

• For most users, the change is smooth:
– Better performance and power consumption

– Negligible cost of binary size increase (and who cares when you have SD?)

– Minor limitations on DEX obfuscation remain.

– For optimal performance (and obfuscation) nothing beats JNI...

That’s all, folks!

Oh, and...

@Technologeeks Training

• “Android Internals & Reverse Engineering” training discusses all this, and more

– Native level debugging and tracing

– Binder internals

– Native services

– Frameworks

– DEX, OAT structure and reversing

• Based on “Android Internals” – (available) Volume I and (Jan 2016) Volume II

• http://Technologeeks.com/AIRE

– Next training: To Be announced!

• Follow @Technologeeks for updates, training, and more!

