In a Bind?

Android’s Binder — in depth

Jonathan Levin
http://NewAndroidBook.com/
http://Technologeeks.com/

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

IPC, lllustrated

Some definitions

* |[PC: Inter Process Communication
— Allowing two separate processes to interact
* Otherwise, process virtual memory is entirely isolated

— Many mechanisms exist:
* Message passing
* Sockets

 Shared mem

 RPC: Remote Procedure Call
— Hides IPC inside a function call.

Some definitions

* Proxy: The client end of the RPC
— Serializes arguments, sends message
— Gets reply, deserializes return code/exception

* Stub: The server end of the RPC

— Deserializes arguments
— Invokes real function (hence, itself, a stub)
— Serializes return code/exception

Some definitions

* Endpoint Mapper:

— Allows unrelated clients and servers to talk
* A priori - Known to all, loved by all
* Servers register with it
* Clients lookup with it (Context.getSystemService)

The Service Manager

* Android’s Endpoint mapper
* Single threaded process, started by Init

* Designated as system critical
— If it fails — soft system restart (zygote, all services)

The Service Manager

4) Newly allocated entry is
added to the svclist linked list

Linked list pointer to next entry
Pointer to binder reference
Binder death notification data
accessible to isolated process?
Length of name

Service name, in unicode

3) servicemanager receives the message,
Allocates a new svcinfo structure, and

populates it with the name, and service
reference obtained from message.

servicemanager

GET_SERVICE_TRANSACTION (name)

getService(name)

R R 2) A SVC_MGR_ADD_SERVICE
ADD_SERVICE_TRANSACTION (name, ref) transaction is sent over Binder
to the context manager

getService(name)
addtService(name)

addService(name, ...)

1) Server calls the java (android.os.
or C++ (defaultServiceManager()) addService()

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

The Service Manager

User App servicemanager

getService(nome)

0) Service binder handle is registered

“Wanager™ a priori by system_server (or
binder handle to service ther 3" party ;)

getSystemservice(name.)*

— e
Manager class, which serializes
RPC over binder, using AIDL

1) User code calls
Context.getSystemService()

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

Binder

* Binder provides the core of RPC in Android
— Provides conduit to pass intents and other objects
— Supports remote method invocation (AIDL)

* UNIX sockets still used, but infrequently
— Zygote and some native daemons (/dev/socket/*)
— InputDispatcher to Applications (socketpairs)

Binder

* UNIX sockets have serious shortcomings:

— Anonymous sockets can only be shared by progeny

* Inherited as file descriptors

— Named sockets require a filesystem “presence”
* Filesystem ensures system-wide uniqueness and visibility
* This requires a writable location — not many of those..
* Also vulnerable to race conditions (open to MiM attacks)

Binder

* Binder provides an alternative to sockets

— Supports most socket functionality
* Credentials

* Passing descriptors
— Can also pass shared memory (using ashmem descriptors)

— Extends capabilities to a full IPC/RPC model

* Allows dynamic registration and location of services
* Provides “Death Notifications”

Binder Nomenclature

* A STRONG reference is a handle to an object
— Object remains alive so long as >=1 STRONG exist
— A handle can only be used (called) if it is strongly held

A WEAK reference is just a “link” to an object
— Essentially, a declaration of “interest” in the object
— Object may actually die, in which case weak ref is voided
— Reference must be promoted to a STRONG ref to be used

 WEAK references enable Death Notifications

Death Notifications

* Binder will register your interest in an object

— Effectively, providing you with a weak reference to it

* If object dies (host process exits or killed):
— Remote Binder sends you a notification (obituary)
— Your local Binder calls your callback

Binder

* Android goes to great lengths to abstract Binder
— Java Layer: AIDL
— Framework Layer: Android.os.Binder (+ android_util_Binder)
— Native Layer: libBinder.cpp

* Actual mechanism is implemented by kernel module

— For the longest time, in drivers/staging, now in mainline.

Java (Developer) Method implementation
(provided by developer)

___ T

* Developer starts by writing method implementations
* Methods and objects are exported into an .aidl file

package com.NewAndroidBook.example;

interface ISample {
/* 1 */ void someFunc (int someArg); // no return value, integer arg

/* 2 */ boolean anotherFunc(String someArg); // boolean return value, string arg

}

* AIDL is a bit like a C header file (.h) — just prototypes

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

Java (Developer)

AIDL

Method implementation
(provided by developer)

A

Java Proxy Class
(generated by AIDL)

Java Stub Class
(generated by AIDL)

« The SDK “aidl” tool auto generates client/server code:

— “Proxy” for the client: serializes arguments, invokes method

— “Stub” for the server: deserializes, calls, serializes return value

morpheus€Zephyr (/tmp/sample)

#

% aidl ISample.aidl

If the interface has a package specification, aidl will refuse:

#

ISample.aidl:3 interface ISample should be declared in a file

called com/NewAndroidBook/example/ISample.aidl.

morpheusfZeyphr (/tmp/sample) % mkdir -p com/NewAndroidBook/example

#

Sigh Fine. Comply with Java naming conventions, and move:

morpheusfZeyphr (/tmp/sample) % mv ISample.aidl com/NewAndroidBook/example
morpheusfZephyr (/tmp/sample) % aidl com/NewAndroidBook/example/ISample.aidl

#

No news is good news - and note the java file which was auto-generated:

#

morpheuséZephyr (/tmp/sample)

total 16

-IW-r--r-- 1 morpheus
-IW=-r--r-- 1 morpheus

-1 com/NewAndroidBook/example/

6 16:48 ISample.aidl
6 16:53 ISample.java

Method implementation
(provided by developer)

A

Java (Developer)

Java Stub Class Generated from class.aidl

AIDL Java Proxy Class
(generated by AIDL)

(gsenerated by AIDL)

android.os.IBinder:transact()

Framework

android/os/Binder.java

Y

android.os.BinderProxy:transactNative() android.os.Parcel

* The framework abstracts both classes with an “IBinder”
— The “BinderProxy” serves as client, exports “transact()”
— The “Binder” provides an “onTransact()” callback

* “transact()” magically invokes remote “onTransact()”
* Transaction can carry a serializeable “Parcel” object

Java (Developer)

AIDL

Java Proxy Class
(gsenerated by AIDL)

android.os.IBinder:transact()

Framework

Method implementation
(provided by developer)

A

Java Stub Class
(gsenerated by AIDL)

Y

android.os.BinderProxy:transactNative()

A 4

Generated from class.aidl

android/os/Binder.java

* The Framework uses JNI to communicate with library
* The “JavaBBinder” object bridges upcalls back to VM

Java (Developer)

AIDL

Java Proxy Class
(gsenerated by AIDL)

android.os.IBinder:transact()

Framework

Method implementation
(provided by developer)

A

Java Stub Class
(gsenerated by AIDL)

Y

android.os.BinderProxy:transactNative()

A 4

android_os_BinderProxy_transact()

e
R

v

T

* libBinder provides matching native level objects:

— Ibinder (“interface”), Bbinder, BpBinder, and Parcel

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

android/os/Binder.java

libBinder.so (Binder.cpp)

Java (Developer)

AIDL

Java Proxy Class
(gsenerated by AIDL)

android.os.IBinder:transact()

Framework

Method implementation
(provided by developer)

A

Java Stub Class
(gsenerated by AIDL)

android.os.BinderProxy:transactNative() android.os.Parcel

Y

A 4

IPCThreadState::self()->transact()

ioctl(2)

ioctl(2)

* ProcessState/IPCThrea déi.@ te abstract kernel interface

1
\O\Ie‘(‘dde“‘ -——— J __________________ I
android.os.Binder:onTransact() E

android/os/Binder.java

libBinder.so (Binder.cpp)

Java (Developer)

AIDL

Java Proxy Class
(gsenerated by AIDL)

Method implementation
(provided by developer)

A

Java Stub Class
(gsenerated by AIDL)

android.os.IBinder:transact()

Framework

(ove*!

android.os.Binder:onTransact()

Y

android.os.BinderProxy:transactNative()

A 4

android.os.Parcel

IPCThreadState::self()->transact()

Kernel

ioctl(2)

v

I A
! 1
! 1
I I _
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1
void *Data IPCThreadState:executeCommand()
1
| .
X ioctl(2)

/dev/binder Kernel Module

(c) 2015 lonathan l evin, NewAndroidBook.com, licensed to Technologeeks.com

android/os/Binder.java

libBinder.so (Binder.cpp)

IPCThreadState.cpp

Layers::AlDL

* Demo: AIDL code generation

Layers::Framework

* Android.os.Binder is actually quite documented
* Defines the “default transactions”*

Constant Value Default Behavior
Null transaction ensuring service object is alive. (q.v.
PING_TRANSACTION PNG 4 . . .
= = android.os.IBinder.pingBinder()
DUMP_TRANSACTION _DMP Requests full dump of service state. Used by dumpsys
INTRRPACE TRANSACTION| Huw chucsts interface of service object behind handle. Expects UTF-16
- - interface name as reply
SYSPROPS_TRANSACTION | SPR Used by native code only: calls 1ibutils's

report_sysprop_change(), which invokes any registered callbacks

* Meant to be overridden
— AIDL code does that automatically for you

* - And a couple of not-so-funny joke transactions as well (TWEET, LIKE..)

Layers::LibBinder

 LibBinder isn’t documented at all..
* Object structure essentially mirrors Java’s

* Excessively heavy use of templates, macros
— Not trivial to follow class hierarchy/flow at all..

RefBase.h :’""""""""'""": Base class for strong and weak references
:L__-+-iF1-c_/E:I_e_c-S-t-r<-)_r1_g_(f&)""E Also provides wp<> and sp<>
' +inc/decWeak(id) !
-"ZF _____ AI ______ ZE _____
IBinder.h IBinder Base interface for all Binder objects
IBinder:DeathRecipient
+transacty(...)
+un/linkToDeath(..)
+getinterfaceDescriptor() +binderDied()
+querylocallnterface()
. S R S ? | |
Binder.h i BpRefBase ! i BBinder L BpBinder
L___.mRemote \ i |
: E : +transact() E i
i ! | +un/linkToDeath(...) 1 "IL_trE_Ir_]SSCt()h
:) i | el E i +un/ |nd oDeath(...)
' #onlastStrongRef() | : +pingBinder() b + UBTT‘F;()
o : L #onTransact() o Sttt

Base Proxy
(client)

Bplnterface <class>

Bnlnterface <Iclass>

t#tonAsbinder

+queryLocallnterface()
+getinterfaceDescriptor()

Bpclass

+transact()

+onTransact()

Serialize, remote—>transact(...

)

Deserialize, call, serialize reply

Base native
(Server)

Implementation
(service dependent)

classes
BinderProxy)

Used by Java
(android.os.

BpBinder.h

+asBinder
#onAsBinder=0

Iclass

Base for
all interfaces

L . U S —

DECLARE/IMPLEMENT_META_INTERFACE(class)

Layers::LibBinder

* ProcessState/IPCThreadState further abstract:
— Actual kernel interface entirely hidden
— Thread Pool Management

root@flounder:/# ps | grep mediaser
media 3491 1 145036 27576 binder thr 00£7024e58 S /system/bin/mediaserver
root@flounder:/# cd /proc/3491/task
root@flounder:/proc/3491/task # for i in *; do echo -n "$i: " ; grep Name $i/status; done
3491: Name: nediaserver
3576: Name: mediaserver
3899: Name: ApmTone
3900: Name: ApmAudio
3901: Name: ApmOutput
3905: Name: FastMixer
AudioOut 2
soundTrigger cb
Binder 1
Binder 2

Binder 3
Binder 4
Binder 5
Binder 6
Binder 7
Binder 8

Layers::LibBinder

* Apps (read: Zygote) automatically start pool

— frameworks/base/cmds/app process/app main.cpp

* Native services work similarly
— Examples: healthd, bootanimation, InputFlinger(!)

Layers::Kernel

* At the kernel level, Binder is a character device

— Created as “misc” device, world writable

* All communication done via ioctl(2) calls
— No read/write needed

— Clients open, configure with ioctl(2) then either:
* Enter a polling loop (IPCThreadState::setupPolling)
* Block until message/timeout (IPCThread::joinThreadPool)

int BinderFD = open(“/dev/binder”) Opens Binder character device

A 4

ioctl(BinderFD, BINDER_VERSION, ...) Ensures Binder kernel API version matches libBinder’s

ProcessState::open_driver()

A 4

ioctl(BinderFD, BINDER_SET_MAX_THREADS,..) | Set Max Thread pool size to libBinder default (15)

ProcessState:ProcessState() mmap2(0, BINDER_VM_SIZE,...,BinderFD,0); Map Transaction Memory (1MB — 8K)
IPCThreadState:joinThreadPool() i loctl(BinderFD, BINDER_....LOOPER,) E Main thread Enters looper, secondaries register with it

IPCThreadState:talkWithDriver() loctl(BinderFD, BINDER_WRITE_READ,) Write command to driver, optionally block for read
: L]
I
ISS— o .
i loctl(BinderFD, BINDER_EXIT_LOORPER,) E Secondary threads may exit on time out if not needed

IPCThreadState::threadDestructor() loctl(BinderFD, BINDER_THREAD_EXIT,) Notify Binder of thread termination

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

Layers::Kernel

* loctl(2) buffer points to read/write buffers

— Write buffers provide BC_ commands to Binder
* These may contain transactions, for Binder to execute

— Read buffers provide BR_ replies from Binder
* These may contain transactions for clients to execute
* May also contain “death notifications”

» Buffers are optional (size specified may be 0)

Layers::Kernel

Size of buffer (specified by client)

Size of buffer (used up by driver)

Size of buffer (specified by client)

Size of buffer (used up by driver)

[
»

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

Driver Protocol::Requests

BC_ code Argument Purpose
INCREFS Increase reference count of argument
DECREFS Hand] Decrease reference count of argument
andle
ACQUIRE Acquire a Binder reference
RELEASE Release a Binder reference
INCREFS_DONE Refs. obi Informs Binder reference has been increased
efs,0 - -
ACQUIRE_DONE 2 Informs Binder reference has been acquired
Attempts to acquire a reference (not
ATTEMPT_ACQUIRE supported)
Informs Binder as to success of attempted
ACQUIRE_RESULT acquire (not supported)
: Informs Binder the buffer provided may be
FREE_BUFFER void * safely freed
TRANSACTION Contains additional Binder transaction data
REPLY Contains additional Binder transaction data

REGISTER_LOOPER

Called by secondary threads entering the
Binder thread pool

ENTER_LOOPER

Called by the main thread when entering the
Binder thread pool

EXIT_LOOPER

Called by any threads exiting the Binder
thread pool (usually as result of timeout)

REQUEST_DEATH_NOTIFICATION

CLEAR_DEATH_NOTIFICATION

Handle, Proxy

Informs Binder client is interested in
receiving notifications when remote process
terminates, for whatever reason.

Informs Binder client is no longer interested
in death notification for remote process

DEAD_BINDER_DONE

Proxy

Reply to Binder death notification, informing
Binder the reference death notification has
been processed.

Driver Protocol::Replies

BR_ code Purpose

ERROR Informs client of some Binder error
OK Informs client everything is ok
NOOP No operation
INCREFS Increase reference count of argument
DECREFS Decrease reference count of argument
ACQUIRE Acquire a Binder reference
RELEASE Release a Binder reference

Attempts to acquire a reference (not

Informs Binder as to success of

ACQUIRE_RESULT attempted acquire (not supported)

Incoming transaction requested of the

TRANSACTION oltit

REPLY ll:;s;:g c(:)lt; é);::wous transaction requested
TRANSACTION_COMPLETE

SPAWN_LOOPER Informing client a thread is required
FINISHED

DEAD_BINDER

DEAD_REPLY

FAILED_REPLY

CLEAR_DEATH_NOTIFICATION_DONE(|..

Binder Transaction Data

32-bit handle or pointer

Used to detect mismatched handles

Transactioncode. One of the built-in codes, or applicationdefined

TF_ flags, indicating ONE_WAY, ACCEPT_FDS, or STATUS_CODE (ROOT_OBJECT unused)

sender_pid Process identifier of sender

sender_uid UID of message sender

If non zero, indicates data is a pointer to buffer of this number of bytes

If non zero, indicates data provides offsets into this message

Pointer to a buffer of data_size bytes, or offsets into message

(c) 2015 Jonathan Levin, NewAndroidBook.com, licensed to Technologeeks.com

ProcessState:self()

A 4

ProcessState::startThreadPool()

A 4

ProcessState::spawnPooledThread()

Creates the singleton (on first invocation) or returns it.

A 4

new PoolThread(isMain)

A 4

new Thread()

A 4

PoolThread::threadLoop()

A 4

IPCThreadState::self()->joinThreadPool

v

Creates the thread (using androidCreateRawThreadEtc) and enters the threadlLoop

Inform Binder (BC_..._LOOPER)

Y

Main reports ENTER, seconaries report REGISTER

\ 4

processPendingDerefs()

BR_DECREFS/BR_RELEASE

Y

getAndExecuteCommand()

BR_SPAWN_LOOPER

Sets pending derefs

Spawns secondary

Y

Inform Binder (BC_EXIT_LOOPER)

A 4

[

IPCThreadState::threadDestructor

BR_TRANSACTION

Upcalls incoming transactions

BBinder::transact()

A 4

BR_DEAD_BINDER

\ 4

\ 4

BR ...

A 4

BpBinder::sendObituary()

Handles Death Notifications

Tracing/Debugging

|

- Experiment: Using the bindump tool to view open Binder handles

The bindump tool, which you can find on the Book's companion website is nothing more than a
simple derivative of the service command, which obtains a handle to the system service of choice (as
does service check), and then inspects its own entry in the /sys/kernel/debug
/binder/proc directory. Each process using Binder has a pseudo-file containing various statistics, and
the node entries contained therein reveal the PIDs connected on the other end. Because all the Binder
debug data is world readable, you can run this tool on unrooted devices as well.

Output 6-3: Revealing Binder endpoints using the bindump utility

#

Inquire about wallpaper service

shellfhtc mBwl:/ § /data/local/tmp/bindump wallpaper
7 ‘?ID 1377 ‘ : c.
g PID 1194

:t PID 1008

User: PID 368

#

Who owns the batterypropreg service?

shellfhtc_mBwl:/ § /data/local/tmp/bindump owner batterypropreg
*e: batterypropreg node ref: 105785

:t PID 8153 /sbin/he

Another free tool to monitor Binder connections is Opersys's Binder ExplorerE. This tool works as an
App, or along with an HTML GUI, to show a graphical view of connections in real time.

The book's companion website also provides jtrace, with is a special version of strace(1), the
Linux system call tracing tool, with augmented functionality that includes parsing of Binder messages (i.e.

deciphering ioctl (2) codes and payloads).

That’s (NOT) All, Folks!

@ Technologeeks Training

“Android Internals & Reverse Engineering” training discusses all this, and more
— Native level debugging and tracing
— Binder internals
— Native services
— Frameworks
— DEX, OAT structure and reversing
— Graphics, Media and Audio

Based on “Android Internals” Volume | and (Jan ’16, finally!) Volume Il

http://Technologeeks.com/AIRE
— Next training: February 8%, 2016, NYC!

Follow @Technologeeks for updates, training, and more!

Some References

Great discussion:

* http://events.linuxfoundation.org/images/stories/slides/abs2013 gargentas.pdf

Old, but nice:

« https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf

* http://rts.lab.asu.edu/web 438/project final/Talk%208%20AndroidArc Binder.pdf

My book:

* Android Internals, Volume II, Ch. 11 (http://NewAndroidBook.com/)

