
Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Android Internals

A Confectioner's Cookbook

Volume I: The Power User's View

Version 2.0 - Revised and expanded with updates for Android 11

By Jonathan Levin

North Castle, NY

In memoriam: Frank R. Dye. I missed you by a day, and will miss you for a lifetime

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table of contents

Chapter 0: About This Book

Chapter 1: A first glance at Android's architecture

1. Android version history

1.1. Cupcake

1.2. Donut

1.3. Éclair

1.4. Froyo (2.2.x)

1.5. Gingerbread (2.3.x)

1.6. Honeycomb (3.0)

1.7. Ice Cream Sandwich (4.0-4.0.4)

1.8. JellyBean (4.1-4.2)

1.9. KitKat (4.4.x)

1.10. Lollipop (5.0-5.1)

1.11. Marshmallow (6.0-6.0.1)

1.12. Nougat (7.0-7.1.2)

1.13. Oreo (8.0-8.1)

1.14. Pie (9.0)

1.15. Android 10

1.16. Android 11

2. Android vs. Linux

2.1. Not just another Linux Distribution

2.2. And then came Android.

2.3. Commonalities and Divergences from Linux

2.4. Obtaining and compiling Android

2.5. The sources of Android Code

3. The Android Architecture

3.1. Applications

3.2. The Android Frameworks

3.3. The Android Runtime

3.4. JNI

3.5. Native Binaries

3.6. Native Libraries

3.7. Bionic

3.8. Hardware Abstraction Layer

3.9. The Linux Kernel

4. Android Derivatives

4.1. Google offshoots

4.2. Google-less ports

4.3. Android Everywhere

4.4. Fuchsia

5. Pondering the Way Ahead

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

5.1. Android and Project ARA

5.2. Brillo (Android Things)

Chapter 2: Android Hardware

1. The ARM architecture

1.1. ARMv8 (Aarch64)

1.2. ARMv8.1

1.3. ARMv8.2

1.4. ARMv8.3

1.5. ARMv8.4

1.6. ARMv8.5

1.7. ARMv8.6

2. Devices

2.1. Device Nodes

2.2. Network interfaces

2.3. sysfs

3. System on Chip (SoC) overview

3.1. A high level view

3.2. SoC Components

4. SoC vendors

4.1. Qualcomm

4.2. Samsung

4.3. Huawei

4.4. MediaTek (ᘶݎᑀದ)

4.5. Unisoc (Spreadtrum)

4.6. NVidia

5. The Device Tree

5.1. Device Tree Strings

5.2. Device Tree Blobs

5.3. Device Tree Blob Overlays

5.4. The Device Tree Compiler (DTC)

6. Firmware images

6.1. Linux firmware handling

6.2. ueventd

6.3. Platform/BSP driver handling

Chapter 3: Android Partitions & Filesystems

1. Partitioning Schemes

1.1. The need for separate partitions

1.2. The GUID Partition Table

1.3. A/B[/C] Slotted Devices

1.4. Dynamic Partitions

1.5. lpdumpd (Android 10)

2. Android Partitions & Filesystems

2.1. The root file system and mount points

2.2. Mountable Android partitions

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

2.3. Standard Android non-mountable partitions

3. Chipset-specific Partitions

3.1. Qualcomm

3.2. Samsung

3.3. Huawei

3.4. Mediatek (MTK)

3.5. expdb

3.6. preloader

4. The Linux pseudo-Filesystems

4.1. bpf (/sys/fs/bpf)

4.2. cgroupfs

4.3. configfs

4.4. debugfs

4.5. functionfs (/dev/usb-ffs/adb)

4.6. FUSE

4.7. incrementalfs (Android 11)

4.8. overlayfs

4.9. procfs (/proc)

4.10. pstore (/sys/fs/pstore)

4.11. sdcardfs/esdfs

4.12. securityfs (/sys/fs/selinux)

4.13. sysfs (/sys)

4.14. tmpfs

4.15. tracefs (/sys/kernel/debug/tracing)

Chapter 4: Android Files & Directories

1. /system

1.1. /system/bin

1.2. /system/lib[64]

1.3. /system/etc

2. /vendor

2.4. /vendor/bin

3. /data

3.1. /data/data

3.2. /data/misc

3.3. /data/system

3.4. /data/vendor

3.5. /cache

Chapter 5: Storage Management

1. Mounting Filesystems

1.1. Mount options

1.2. Overlay mounts

1.3. Loop mounting

1.4. Bind mounting

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

1.5. FUSE mounts

1.6. Mount namespaces

1.7. Case Study: /data/mirror

1.8. fs_mgr

1.9. The fstab file

2. Storage daemons & services

2.1. vold

2.2. The StorageManager service (mount)

2.3. storaged

2.4. storagestats

2.5. devicestoragemonitor

3. Protected Filesystems

3.1. OBB - Opaque Binary Blobs

3.2. ASec - Android Secure Storage

3.3. diskstats

4. Android Pony Express (Android 10+)

4.1. The Android Pony EXpress Daemon

4.2. APEX and the linker configuration

5. External storage

5.1. Portable storage

5.2. Emulated storage

5.3. Adoptable storage

5.4. Scoped storage (Android 10+)

6. Incremental Filesystem (Android 11)

Chapter 6: Android System Images & Updates

1. Android Device Images

1.1. Factory Images

1.2. OTA packages

2. Image Payload formats

2.1. The filesystem images

2.2. Android boot.img

2.3. The RAM Disk (initramfs)

3. Handling updates

3.1. Flashing

3.2. Updates via recovery (non A/B devices)

3.3. Updates on A/B devices

3.4. The system_update service (9.0)

4. Generic System Images (Android 9+)

4.1. gsid (Android 10+)

4.2. Dynamic System Update (DSU)

Chapter 7: The Android Boot Process

1. The Boot Process

1.1. The Boot ROM/PBL

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

1.2. Second Stage/eXtensible Boot Loader

1.3. TrustZone/Hypervisor

1.4. The Android Boot Loader

1.5. The Linux Kernel

1.6. Kernel Boot

2. Boot statistics

2.1. /system/bin/bootstat

2.2. /data/misc/bootstat

2.3. Samsung's /proc/boot_stat

3. Bootloader communication

3.1. The bootloader_message

3.2. The bootloader_message_ab

3.3. The misc_virtual_ab_message

3.4. The Boot Control HAL

3.5. androidboot.* kernel arguments

Chapter 8: User mode startup - init & Zygote

1. The roles and responsbilities of init

1.1. watchdogd

1.2. Mounting File Systems

2. System Properties

2.1. Accessing properties

2.2. Special namespace prefixes

2.3. Property files

2.4. PropertyInit()

2.5. The property store

2.6. The property_service

3. The .rc Files

3.1. Triggers, actions, and services

3.2. init.rc syntax and command set

4. Putting it all together: The flow of init

4.1. The high-level view

4.2. The First Stage

4.3. SetupSelinux(…)

4.4. The Second Stage

4.5. Descriptors

4.6. Bootchart support

5. Shutdown & Reboot

5.1. sys.powerctl and rebooting

5.2. Userspace Reboot

6. Zygote

6.1. Design rationale

6.2. Zygote32 and Zygote64

6.3. The webview_zygote

6.4. UnSpecialized Application Processes (USAPs)

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

7. Android (AOSP) Daemons, at a glance

Chapter 9: The Framework Service Architecture

1. The Service Calling Pattern

1.1. Nomenclature

1.2. Advantages and disadvantages

1.3. Serialization and the Android Interface Definition Language (AIDL)

2. The Binder

2.1. A little history

2.2. So, what, exactly, is Binder?

2.3. Using Binder

2.4. 8.0+: The vndbinder and hwbinder

2.5. Tracing Binder

3. The servicemanager

3.1. The android.os.IServiceManager Interface (Android 11)

4. system_server

4.1. Handling Services

4.2. Startup and Flow

5. A bird's eye view of framework Services

5.1. LocalServices

Chapter 10: Device Configuration & Management

1. User Management

1.1. The user service

2. Account Management

2.1. The accounts database

2.2. The account service

3. Configuration Settings

3.1. config.xml and other files

3.2. Overlays

3.3. The settings service

3.4. The device_config service

3.5. Server Configurable Flags

3.6. The …/etc/sysconfig directories

3.7. The system_config service (Android 11)

Chapter 11 : Android Through a Linux Lens

1. Processes and threads in Android (and Linux)

2. /proc, revisited

2.1. The symlinks: cwd, exe, root

2.2. The cmdline and comm

2.3. fd

2.4. fdinfo

2.5. status

3. Process Management

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

3.1. Thread Priorities

3.2. cgroups

3.3. Task profiles

3.4. libprocessgroup

3.5. The Live-Lock Daemon (Android 10)

4. User mode memory management

4.1. Virtual Memory classification and lifecycle

4.2. Memory Metrics

4.3. Out of Memory conditions

5. Process and Memory information

5.1. The cpuinfo service

5.2. The processinfo service

5.3. The procstats service

5.4. The meminfo service

5.5. Process snapshot - The toybox ps tool

5.6. process monitoring - top, procexp

6. System Input/Output

6.1. Android 10: iorapd

6.2. The pinner service

Chapter 12: Logging, Statistics & Monitoring

1. Logging

1.1. logd

1.2. DropBox

2. Statistics

2.1. statsd

2.2. statscompanion

2.3. dumpsys

2.4. dumpstate/bugreport

2.5. Incident Reporting

3. Performance Monitoring

3.1. On device: atrace

3.2. From the host: systrace

3.3. Perfetto (Android 10)

4. Vendor diagnostics

4.1. Qualcomm: DIAG

5. Monitoring

5.1. inotify

5.2. The /proc filesystem

5.3. Filesystem activity through android_fs

6. Tracing System Calls

6.1. wchan and syscall

6.2. The jtrace tool

6.3. Using eBPF for tracing

7. Memory

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

7.1. VSS, RSS, etc

7.2. Process memory inspection

7.3. Out of memory conditions

Chapter 13: Power Management

1. Native APIs

1.1. The sysfs interface

1.2. WakeLocks

1.3. libsuspend

1.4. libpower

1.5. libpowermanager

1.6. suspend_control

2. The PowerManagerService and Friends

2.1. PowerManagerService

2.2. DreamManagerService

2.3. DeviceIdleController

2.4. The Power HAL interface

3. Battery monitoring

3.1. Linux power sources (/sys/class/power_supply)

3.2. batteryproperties

3.3. Battery

3.4. BatteryStats

3.5. Battery Charging

3.6. The Health HAL

4. Low-level CPU control

4.1. MultiCore

4.2. Interrupt Affinity

4.3. Governors

4.4. Idle Governors

4.5. Schedulers

5. Thermal monitoring

5.1. Linux Kernel support

5.2. Android support

5.3. Vendor thermal daemons

6. Power Management Statistics

6.1. The android.hardware.power.stats HIDL interface

6.2. Case Study: Pixel powerstats

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

About This Book

1. Overview

This is the new, and greatly revised edition of "Android Internals". The original work, published
in 2015, covered up to Android L. Since then, I constantly kept it updated with incremental
modifications as Android progressed. Over time, these changes amassed, and required revisions as
some features were no longer supported. When my book gained world fame but sales crashed
(thanks to the CIA and the reckless WikiLeaks), I knew a revision would be a matter of time.

If you got this book, no doubt you recognize the importance of Android. From a start-up started
back in 2003, it has been assimilated by Google, and morphed into one of its largest arms. Taking on
Apple's iOS head on (some would say, too closely), it has not only achieved hegemony over mobile
operating systems worldwide (with a staggering 82% of the market persistently maintained) but has
also permeated other platforms, becoming an operating system for wearable devices, TVs, and
embedded devices.

Android is open source and freely available, meaning anyone can get it, and adopt it to any
platform - indeed, it owes its overwhelming popularity to this. It was surprising, however, that over
seven years after inception, no book to date has taken on the task of documenting and explicating
its internals. A previous work on the subject - Embedded Android: Porting, Extending, and
Customizing, by Karim Yaghmour - provides a good deal of detail about the general structure of the
OS, but focuses on building and adapting the sources to new platforms, and stops shy of describing
the structure of the operating system itself. In fact, in his "Internals Primer", Yaghmour states that
"Fully understanding the internals of Android's system services is like trying to swallow a whale".

The analogy is very much an understatement. Which is why this work requires not one, but
multiple volumes. The first (the one you are reading), focuses on Android from the perspective of
the power user or administrator. In it, I try to tackle various aspects of the operating system - its
design, filesystem structure, boot sequence, and native services, along with the Linux foundations
and legacies which affect the operation. All this, without going into code, and trying to provide an
illustrated, conceptual view as possible. This book can be considered, in a sense, a successor to
Yaghmour's work, which remains a great resource and a recommended read.

The second volume of this work (which finally sees print, a fashionable five years later) dives far
deeper, and looks at the structure of Android's frameworks - which is where its appeal to developers
lies: Through a rich set of Java-level frameworks, developers obtain powerful abstractions of input
devices, sensors, graphics and what not. All these abstractions, come at the price - the complexity
that lies "under the hood" - which most developers are quite blissfully ignorant of (and would likely
prefer to stay this way). There is no knowledge that is not power, however, and so deep familiarity
with the frameworks is instrumental for anyone dealing with the low level implementations, and
customizations for performance, hardware or security.

And, since you're reading this "second edition", you probably know by now that the series has
been expanded to three volumes, after all. Volume III, which I had originally mulled for kernel*, is
now set to cover Android's security. That means that the security coverage in the previous edition of
this work has been moved out of what used to be Chapter 8, into its own book.

* - Originally, I was foolish enough to think a third volume, dealing with Android kernel changes, would be a good idea.
Android kernels, however, are 99% identical to Linux (with some CONFIG settings, platform drivers, and minor
"Androidisms"), and that would have meant writing a full Linux Kernel book. A feat which hasn't been attempted in the past
15 years. But never say never

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

http://www.amazon.com/gp/product/1449308295/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1449308295&linkCode=as2&tag=newosxbookcom-20&linkId=3J6JWRLXMYZUAWEG

Android is a constantly shifting landscape. This work was started halfway through KitKat, and
was postponed several times as Android mutated further to become Lollipop (L) when the book
came out. This went on and on, and after continuously posting differential updates all the way to
Oreo I decided it's time for a revision, thus ending up with this "v2.0", which has been updated -
and in some cases rewritten - for 11 (Q). So this book is updated till the latest and greatest.. at least
at the time of publication.

The first edition of this work tried to focus more on illustrations and less on source code
snippets, but this work relaxes this somewhat. Especially in cases where the source code is properly
documented already. My own personal belief was and is of "Read the Source, Luke", in that source
code - unlike natural language - contains (almost) no ambiguities, and is thus the right way of
depicting facts. It is especially because Android's sources are available - though most people haven't
gone into them as they are so overwhelming - that I allowed myself to show more source code, and
leave the paths and hyperlinks to the Android source base as well.

The book continues the "hands-on" approach, taking some of the hands-on exercises from our
Android training and recasting them in the form of Experiments. These are invaluable if you want to
get a good sense of the topics in the relevant section. Android is a UN*X derivative (by virtue of
Linux), and the only way one learns UN*X is through the fingers, and neither eyes nor ears. The
experiments demonstrate many useful commands from the Android command-line-interface (CLI),
and also techniques for looking deeper into the operating system. Furthermore, the experiments will
likely produce different outputs on different strains of Android - which makes them worthwhile to try
on your own device(s), so as to get different perspectives or implementations which may vary by
vendor or OS version.

2. Quid Novi?

So much has changed and has been added over the past five years that this, for all intents and
purposes, can be considered a "second edition" of Android Internals. Volume I delves deeper into
hardware and vendor particularities, as well as includes chapters I had originally thought would be
better off in Volume II, but now realize differently. Many topics' coverage was expanded, to the point
of putting them into their own chapters (Updates, Storage Management, Logging). What was
Chapter 2 (Partitions and Filesystems) is now two chapters - one for Partitioning, and one for a
filesystem tour, in which every single AOSP file in /data is accounted for.

Whereas Volume I previously provided (in Chapter 5) a cursory glance into the many daemons
and almost entirely avoided framework services (thinking I'd cover the latter in Volume II), a major
change is achieving full coverage of every single daemon and framework service in AOSP up to
Android 11. This means some 50 daemons and four times that many services! A side effect is that
Chapter 5 has been removed, and now the daemonic discussions are provided (with more detail
than before) in their respective subsystem chapters.

I've introduced the notion of "business cards" for daemons and services. I cover each in great
detail, of course, but sometimes I believe the reader will just need access to the salient high-level
details (implementing binaries or classes, files, etc). Thus, floating to the right of any detailed
discussion will appear those details, in an easy to read form. Details differ between the different
daemons and services. For services, I note the interface, manager and implementation classes, and
where they're started from. Daemons are all started by /init, so that's irrelevant - but they are in
separate projects, so those are indicated. For both, I note any files, directories, or socket used, and -
importantly - any permissions. Where possible I also note the clients and servers, but since these
can be many, I do not aim to be complete.

Another very prominent omission from this work is the removal of Chapter 8 - Security. As I
mentioned - security is now handled in a third volume. It was a very hard decision to make
(considering my poor track record with Volume II), but the more I thought about it the more it
seemed like the only choice I could make. Android's security is unfortunately complex (arguably,
more than it need be), due to its layering on numerous disparate underlying Linux facitilies. I remind
my security focused readers that the first edition's coverage of security (somewhat dated, but not
that bad, I hope) is still freely available.

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

3. Contents, at a glance

The book is designed to be read either cover-to-cover or as random, quick access. Each chapter
is largely self contained, and hyperlinks on topics allow quick associative navigation when reading
the book in e-Form. For print edition, relevant chapter numbers (for internal links) or URLs (for
external links) are provided.

Chapter One provides an introduction to the operating system: Examining the evolution of the
OS over its versions (since Froyo, 2.2, which was the oldest version I covered in the previous work,
and up to 11). It also explains the architecture (at a high level view), and the Linux underpinnings,
by traversing each layer of the Android stack. It then looks at Android derivatives, both Google's and
other vendors (e.g. Amazon's FireOS).

Chapter Two is a new discussion of Android hardware. Although Android - like its Linux core -
can run on virtually any architecture, we limit the discussion to ARMv8 - the predominant
architecture running all mobile devices - which is quite diverse by itself. The chapter covers the ARM
processor variants and versions, and provides an overview of Systems on Chip (SoCs), before
focusing on specific vendor implementations - Qualcomm, Samsung, Huawei and MediaTek. It also
discusses the important Device Tree structure, and firmware loading for SoC components. Note, that
this is only a high level introduction to hardware and the Linux perspective of it. Much more detail on
Android's take on hardware - namely, HAL interfaces and implementations - is saved for Volume II.

Chapter Three is the first of three dealing with storage - starting with flash partitioning and
filesystems. We start with a recap of the GPT standard, and move to Android specific schemes -
A/B slotting and Android 10's dynamic partitions. Next, the standard filesystems of AOSP - both
mountable and nonmountable - are then discussed. Partitions specific to vendors are listed next, and
finally the pseudo-filesystems of Linux, which Android makes heavy use of. This can be thought of
an introduction to the storage subsytem of Android.

Chapter Four is a tour of filesystem contents, which should prove useful if you ever need to
figure out what a specific system directory or file contains. This chapter is virtually all tables, with
the primary aim to serve as a high-level reference to files encountered in /system, /data and a little
of vendor, and pointers to where else in these books the daemons or services which use them are
detailed. A few of the built-in apps data directories are also covered, which is handy if you're doing
forensics.

Chapter Five concludes the discussion of storage by focusing on the storage subsystem. First,
the specific types of mounting used - loop, bind, FUSE - and mount storage. Android's specific
"types" of external storage - portable, emulated and adoptable. Next, Android's daemons are
detailed - the native vold, and the framework services of mount (the StorageManager),
storagestats and others. Finally, Android 10's apex - The Android Pony EXpress subsystem, is
detailed.

Chapter Six covers Android system images & updates. Starting with a discussion of the
Android factory and OTA images (what some refer to, albeit incorrectly, as ROMs), and how to flash
them onto the device's boot partitions. It then moves on to explain the two update modes - via
recovery and (for newer, slotted devices) the update_engine. It then wraps up with a discussion
of Android's Generic System Images (GSI) and Dynamic System Updates.

Chapter Seven deals exclusively with the boot process. While vendor-specific, the chapter
generalizes the process just enough to present a still detailed view, and then explores
implementation details, such as Qualcomm's UEFI LinuxLoader, and the traditional ABoot. All flows
merge at the kernel and ramdisk loading, and the chapter also examines taking apart and rebuilding
said ramdisk, which is a crucial step in "rooting" the device. Finally, the AOSP/bootloader two way
communication is explored - via the Bootloader Control Block (BCB) in the misc partition, and the
numerous androidboot kernel command-line arguments.

Chapter Eight is dedicated almost entirely to user mode startup - primarily, /init. This, like its
UN*X namesake, is responsible for starting up the system in user mode. As such, it is the direct
continuation of Chapter Seven, which ends with the kernel/ramdisk. The process of startup is
explained in detail, through examination of the /init.rc file syntax. Other roles of /init, such as
maintaining system properties and watching for hardware changes (as ueventd) are detailed as well.
/init spawns numerous AOSP and vendor daemons, and so the chapter lists those of AOSP, indicating
where each is described in the detail it deserves. One such daemon - zygote - is reviewed therein
from the Linux perspective, and will be revisited from the developer's perspective in Volume II.

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

file:///Users/morpheus/Documents/Android/Book/Volume%20I/Introduction.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/all.html%23hw_
file:///Users/morpheus/Documents/Android/Book/Volume%20I/all.html%23pfs_
file:///Users/morpheus/Documents/Android/Book/Volume%20I/c4
file:///Users/morpheus/Documents/Android/Book/Volume%20I/c5
file:///Users/morpheus/Documents/Android/Book/Volume%20I/Boot.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/all.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/Init.html

Chapter Nine provides a gentle introduction to Android's framework service architecture, by
explaining the roles of the servicemanager and system_server processes, which together form
the fulcrum on top of which all of Android's frameworks rest. Binder, the elephant in the chapter, is
described but briefly, leaving most of the meticulous detail for Volume II, but hopefully explaining
just enough to provide more insight as to how Android Inter Process Communication and Remote
Procedure Calls work. It continues its predecessor by looking at zygote's first-born -
system_server, examining its high-level flow. Since system_server is effectively the
svchost.exe of Android, its myriad services are listed here, again with an indication of which
chapter details them in depth.

Chapter Ten focuses on configuration and management: Of the user profile environment,
and of the device's numerous settings, whethere locally or through an admin app and Mobile Device
Management (MDM). Virtually every aspect of Android - and in particular the UI - is customizable,
contributing to the many "skins" and "themes" developed by vendors (and enthusiast modders) in an
attempt to set their devices apart. The Settings app and a few shell commands can control some
aspects of this customization, but real power and complete control is achieved by rooting, or
customizing the firmware image.

Chapter Eleven is a view of Android through a Linux lens - that is, looking at Android system
processes and apps through the /proc filesystem and Linux-level tools. This chapter is a "two-fer" in
the sense that you can apply most (if not all) of the techniques shown there on your Linux system
for native-level debugging. It expands on the original edition by detailing Android's process
management (cgroups and task profiles), expands on the changes in the Low Memory Killer Daemon
(lmkd), adds plentiful detail on Android's process and memory information APIs/services, and
concludes with a discussion of I/O, and the new iorapd daemon.

Chapter Twelve - deals with logging, statistics & monitoring. For logging, logd (the server
providing logcat) and the DropBox service are described in detail. Statistics is almost exclusively
the domain of statsd and incidentd. Monitoring is spread out between atrace, Perfetto, and a
case study of Qualcomm's diagnostics interface. The chapter concludes by formally presenting
jtrace and eBPF, though usage examples abound elsewhere in the book.

Chapter Thirteen - deals with power Management. This was originally planned for Volume II,
but makes a lot of sense here. The chapter avoids the obvious "tips to extend battery life", instead
taking on discussion of the full stack. From native APIs, through the PowerManagerService and
related services, battery and charge monitoring, processor governors, thermal management, and
power statistics.

Certain chapters will appear more to different types of readers, and some chapters correspond
to subsystems, so the following figure can be taken as a "reading guide" suggestion for navigating
through this book, by either sequential or random access:

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

file:///Users/morpheus/Documents/Android/Book/Volume%20I/SystemServer.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/SystemServer.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/ProcessControl.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/Tracing.html
file:///Users/morpheus/Documents/Android/Book/Volume%20I/PowerManagement.html

9

The Framework Service Architecture

The previous chapter painted only a partial picture of the runtime services in Android. The
services detailed therein were all native-level processes - implemented in C/C++, and with no direct
programmatic interface from the Java layer. As such, they can be classified as services which support
the operating system itself. Applications, however, make use of an entirely different set of services,
provided by the Dalvik-level frameworks, with special interfaces. These services have a Java
language interface, and most of which run in the context of one process: system_server, and are
reachable with the help of servicemanager.

We begin by examining the service managers, which provides the role of an endpoint mappers
(that is, allowing service location and invocation). The services make themselves visible to clients by
registering with servicemanager applicable to their namespace, and from that point on clients
may approach that servicemanager and request a connection (or a handle) to the service. All
framework services are invoked in the same way, and this service calling pattern, is discussed next.
In particular, two key components are introduced - The Android Interface Definition Language, or
AIDL, providing the interface (or set of APIs) exported by the services, and the service utility,
which allows the testing and debugging of those interfaces from the command line.

The underlying transport for service (and, indeed, all inter-app) communication is Android is the
Binder mechanism, which is accessible to applications via a character device - /dev/binder,
/dev/vndbinder (for vendors) and /dev/vndbinder (for HIDL servers). What look like simple device
nodes are, in fact, entrypoints to an elaborately designed IPC framework, which is charged with not
only dispatching messages, but also with passing around objects, descriptors, and more, as well as
providing reliability and security. Binder is discussed in great detailed throughout its own chapter in
Volume II, but we nonetheless lay out the high level view and some salient points here.

Lastly, we take a look at system_server itself, which functions as the service host process,
wherein most services* are implemented as threads. We detail the startup, operation, and internals
of this important process. We conclude with a brief overview of the services themselves, which are
cover in their respective domains' chapters throughout this work.

* - A few notable exceptions are SurfaceFlinger and the media services. Note that vendor services usually (and more
commonly, from Android 8) run in their own process.

241

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

file:///Users/morpheus/Documents/Android/Book/Volume%20I/Services.html

1. The Service Calling Pattern

Android's framework services are (with some exceptions) implemented in system_server
threads. Applications thus need to rely on Inter-Process Communication (IPC) in order to invoke
them. This is where the Binder, Android's proprietary IPC mechanism, comes into play. Applications
need to call on the Binder in their own process to obtain an endpoint descriptor, which is then
connected to the remote service. Methods can then be invoked through IPC messages, through a
pattern known as Remote Procedure Call (RPC).

1.1. Nomenclature

The terms IPC and RPC are often used interchageably, though often incorrectly. Because both
terms are fundamental in the context of Android services, it's worth clarifying the difference:

Inter Process Communication (IPC) is a blanket term for all forms of communication
between processes. These include various forms of message passing, but also shared
resources (most notably, shared memory), along with synchronization objects (mutexes and
the like), meant to ensure safety in concurrent access to shared resources (i.e. prevent data
corruption which occurs when two writers attempt to modify the same data item, or race
conditions between readers and writers).

Remote Procedure Call (RPC) is a specific term for a method of IPC, which hides the
actual communication inside procedure (method) calls. The client calls a local method, which
in turn is responsible for transparently handling the IPC with the remote server - which may
at times be on a different machine. The method serializes its arguments into a message,
which is then transported to the server's method, where the arguments are deserialized,
acted upon, and the same occurs (in reverse) for passing the return values of the method, if
any.

Figure 9/1-1: The generalized RPC architecture

Thus, any RPC mechanism is also an IPC mechanism (the former being a special case of the
latter), but not vice versa. Android's service calling pattern implements RPC, as we discuss and detail
in this section. Table 9/1-2 compares the RPC mechanisms used in contemporary OSes:

Table 9/1-2: Comparison of RPC mechanisms in common operating systems

OS Mechanism Scope Locator Preprocessor Transport
UN*X SunRPC Local/Remote portmapper rpcgen UDP,TCP

Windows MSRPC Local/Remote rpcss MIDL TCP,HTTP

OS X/iOS Mach Local (Remote) launchd (mach_init) mig Mach messages

Android Binder Local servicemanager aidl /dev/*binder

242 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

As shown in the table, all RPC mechanisms have common denominators, specifically:

scope: denoting whether the RPCs are used in between hosts (remote), or only locally*

Locator: The server providing the directory lookup functionality, for locating services

Preprocessor: The tool used to generate the serialization and deserialization code for
messages

Transport: The medium for message passing

1.1.1. The Endpoint Locator

For RPC to work, the client must have a way to locate the server providing the desired service,
which is why an endpoint locator is used. The locator is a third party, which maintains the
directory of services: Servers can use it to register their offered services, and clients can use it to
look them up. This is reminiscient of DNS, wherein a browser uses a logical host name rather than
dealing with the IP address, but is of a local scope, and returns a handle to the service. As with
DNS, the client must also have a way to locate the locator, and the simplest way to provide that is to
bootstrap the process by defining the locator as "well known" (similar to DNS address hard-coding),
so that all peers, clients and servers alike, are able to reach the locator a priori.

1.1.2. Transactions

Remote Procedure Calls need to be used in a such a way that both the client and server can
agree on which method is requested, and with what arguments. Binder uses a simple numbering
scheme, wherein the transaction code is some value in the range of FIRST_CALL_TRANSACTION
(0x00000001) to LAST_CALL_TRANSACTION (0x00ffffff), meaning some 224-1 transaction codes
are possible (with numbers above that range reserved, but used by only a few system transactions
like INTERFACE.., DUMP.., SHELL_COMMAND.., etc). The term "transaction" emphasizes the
request and reply are connected in such a way that the caller can be (generally) perceive them to be
atomic (though in fact they are anything but).

The local proxy code is thus responsible for translating the method code into a transaction code,
as well as serializing ("marshalling") its arguments into the Binder call. At the opposite end, the
incoming message is processed so as to extract its transaction code and direct it to the right server
method, along with those very same arguments, now deserialized.

The server method performs whatever processing is required, and then the roles are reversed.
It is now the server code which needs to serialize any out arguments, and the return value (if any)
into the reply message. The reply is then passed to the Binder medium, through which it makes its
way back to the requestor. Once received, the serialized values are read, and the method invocation
returns to the local calling code, which remains oblivious to all that transpired.

1.1.3. Interfaces

Using numeric transaction identifiers is simple and efficient, but herein lies a potential problem:
A client might potentially connect to the wrong service handle, and issue a transaction with an
erroneous code and incorrect arguments. This could result in a client or server crash - or, worse,
unintended consequences.

Binder's solution for this is to use Interfaces. An interface is a reverse DNS identifier, which
uniquely identifies the set of methods provided by the service (or any Binder object). This way,
requests for this or another service method should consist of not only the number, but also the
interface identifier. This mitigates the risk of accidental method number confusion. Interfaces can be
queried through a well known INTERFACE_TRANSACTION code, which itself can be sent on its own
(i.e. does not require the interface identifier, since it is likely not known at the time). The transaction
code is _NTF (0x5f4e5446). The high-order byte is 0x5f ('_'), so the INTERFACE_TRANSACTION is
(along with several other codes) in Binder's reserved transaction namespace, with no risk of any
interface actually claiming this code for some other purpose.

Using the service list command will display all registered services, and also provide (in '[]')
their interfaces. Note, that the interfaces are not registered with the endpoint locator: service
list first requests servicemanager to list all services, and then iterates over the list, obtaining
the service handle for each service, and then probing it with an INTERFACE_TRANSACTION code.

* - Android's Binder is, by design, limited to a local scope. It's possible, however, to work a local proxy to further transport
the Binder RPC over a TCP or UDP socket, thus enabling remoting - highly useful capability for Remote Access or Malware.

243Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Those services not appearing with an interface (i.e. have an empty '[]' listed in the output of
service list) either refuse the INTERFACE_TRANSACTION (as they may choose to restrict their
interface to AID_SYSTEM callers), or do not have a specific interface. In that case, they will respond
only to the default transactions of android.os.IBinder: The DUMP_TRANSACTION (_DMP, or
0x5f444d50) of dumpsys, the SHELL_COMMAND_TRANSACTION (_CMD, or 0x5f434d44) of cmd, and
a few other internal ones (all prefixed by '_').

Android developers remain blissfully oblivious to the underlying implementation of service
invocation. Instead, as most Android developers are familiar with, they are required to call on the
getSystemService() method of the Context object, which accepts the name of an Android
system service, and returns an opaque object. The object returned can then be type cast into the
specific service object, and the service methods can be invoked through it.

Figure 9/1-3 shows the general pattern followed by most service method calls. The figure is
somewhat simplified (for example, the system service handles are cached), but still presents the
flow. Services are registered, a priori, by the server process (commonly, system_server, or a 3rd
party process), through a call to android.os.ServiceManager. Recall this class provides a Java
interface to the service manager.

Figure 9/1-3: Android system service call pattern

1.2. Advantages and disadvantages

The system service architecture of Android follows a generic local client/server pattern, common
to other OSes, such as iOS. Though iOS has no Binder, it uses its own implementation of a message
passing architecture, called Mach messages. The role of servicemanager (i.e. the endpoint
matter) is assumed by iOS's launchd process, which (among other things) also handles the
traditional PID 1 roles that Android's /init does.

A disadvantage which quickly stands out in this architecture is the overhead of IPC, particularly
the need to serialize and deserialize messages, as well as the context switch required when
alternating between the processes. This disadvantage does have a noticeable performance impact.

244 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Given such a considerable disadvantage, it must be offset by advantages greater or equal in
magnitude - and indeed, it is: Aside from the cleaner design and separation of privileges which
follows, a client/server architecture gains security as a corollary. The client process - which is, by
definition, an untrusted user app, is entirely devoid of any permissions, and therefore relies entirely
on service calls to perform any operations. At the native level, this means that an app can be run
sandboxed, without any access to devices and datastores, if any. Indeed, this is the case in iOS
(wherein apps are "jailed"), though Android relies (for most processes) on filesystem permissions to
deny access.

The server processes are trusted, and expected to perform all security checks, ensuring the
client has the necessary permissions before agreeing to serve the request. Once again, the two arch
rivals are similar here, with iOS relying on entitlements, (embedded in the binary's code signature),
and Android on the application's Manifest file. In both cases, the permissions are declared outside of
the application's runtime scope - i.e. they can be verified when installed (or, in iOS's case, when
Apple vets the app), but cannot be modified by the App: Specifically, iOS's Entitlements are stored in
kernel space (as part of the cached code signature blob), whereas Android's permissions are
maintained by the PackageManager.

1.3. Serialization and the Android Interface Definition Language (AIDL)

In design pattern parlance, the object obtained from getSystemService serves as a Proxy:
Internally, it holds a reference to the actual service, which it obtains over a Binder call. The methods
exported by the object are, for the most part, merely stubs, which take their arguments, and
serialize them into a Binder message, referred to as a Parcel. The methods and objects serializable
in this way are specified using AIDL. AIDL isn't really a language, per se. It's essentially a derivative
of Java which is understood by the aidl SDK utility, which is invoked in the build process when .aidl
files are encountered. The aidl automatically generates the Java source code required to serialize
any parameters into a Binder message, and extract the return value from it. The code is "boilerplate"
- i.e. it can be automatically generated from the definition files and is guaranteed to compile cleanly.
A sample .aidl file is shown in Listing 9/1-4:

Listing 9/1-4: A sample .aidl file

As you can see, an .aidl is somewhat similar to a header file, in that it defines methods (and
possibly objects), but not their implementation. As we explore the individual framework services
later in the book, you'll be able to see many more examples of actual .aidls from the AOSP.

The aidl tool does a marvelous job of hiding the implementation details of Android's IPC from
the developers. So great a job, in fact, that most developers remain blissfully ignorant of the role of
Binder, or its very existence. This work, however, recognizes the role of Binder, providing an
introduction to it later in this chapter, and discussing internals in Volume II.

Power users can remain equally oblivious to Binder, especially with a powerful tool like the
service utility, which enables the invocation of Android service methods right from the command
line. A previous experiment demonstrated the basic usage of the service command line utility, as a
method of interfacing with the servicemanager process. The true power of service, however,
lies in its ability to call the services themselves, as demonstrated in the following experiment:

package com.NewAndroidBook.example; // Creates java directory structure
import com.NewAndroidBook.whatever; // Dependencies, if any

interface ISample {

 // Published interface - will be shown as com.NewAndroidBook.example.ISample
 // The numbers are the ones used when serializing (and using service call)

 /* 1 */ void someMethod (int someArg); // no return value, integer argument
 /* 2 */ boolean anotherMethod(String someArg); // returns boolean, string argument

 // AIDL methods are commonly incrementally numbered from 1, but using '=' and the method number.
 // it is possible to assign numbers. Although this helps version compatibility, it is rarely used.

 /* 4 */ void exampleNumberedMethod(Byte[] anotherArg) = 4;

 // ... etc.. etc..

}

245Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Experiment: Using the service command to call services

Calling a service is a simple enough matter - using service call, and specifying the service name
and method number: Internally, methods are assigned numbers in order of their appearance in the
service's .aidl file. Depending on the method, optional arguments may be supplied. The service utility
supports few types (extended in Android 11). In practice, however, integers can be used for any 32 or 64-
bit value, and strings - being unicode - can be used to serialize any object.

Any service retrieved by service list with an interface (specified in brackets) can be called on in
this manner. Each interface has a corresponding .aidl file in the AOSP, wherein its methods and their
arguments are clearly defined. Once you have the definitions, you can invoke any method of your choice,
by figuring out its call number and passing the appropriate arguments. A few of the interesting ones are
shown in Table 9/1-5:

Table 9/1-5: service call commands

service call... Interface Method Action
phone 2 s16 "foo"
 s16 "555-1234"

ITelephony
call(String callingPackage,
 String number)

Place a call to specified number.

statusbar 1

IStatusBarService

expandNotificationsPanel() Brings up notifications

statusbar 2 collapsePanels() Hides all panels

statusbar 9 expandSettingsPanel() Brings up settings

dream 1 IDreamManager dream() Screensaver (if configured)

power 11 IPowerManager isScreenOn() Returns 0 if screen is off, else 1

The low level call numbers assigned to methods may (and do) change between Android builds -
even within the same API version (between "_r" releases). It's generally a bad idea to rely on

hard coded numbers - if you intend to use these private APIs, compile alongside the updated .aidl files

Invoking calls in this way will return a result in a Parcel (the Binder term for a message). Each parcel
contains, at a minimum, a 32-bit return value (0x00000000 indicating success, otherwise some error
value, commonly 0xffffffff or 0xffffffb6 ("not a data message") if a call number is outside
the defined range). Depending on the AIDL definition, what follows is either an integer value (i32), or a
length specification, followed by an opaque object (usually, but not necessarily, a string). Because
service, like Binder, has no idea of what the opqaue object is, it will display the result in a manner not
unlike the od command, with a hex dump of the message contents, alongside an ASCII dump of it.

Only services with a published interface (specified in [brackets]) can be invoked. Not all services will
blindly lend themselves to this type of invocation: Depending on the security policy, which is implemented
differently by individual services, your service call request may be denied. If that is the case, the output
of service call will contain a unicode error message, like so:

Output 9/1-6: Error messages returned from service call

Once you get past permissions, however, (for example, by running as root), the possibilities of using
service call in this manner are nearly endless, spanning all the features and capabilities of the
Android frameworks. As we cover the framework services in this work one by one, we'll be showing their
respective AIDL definitions, and number the calls accordingly.

Attempt to call cancelMissedCallsNotification(), which requires
MODIFY_PHONE_STATE permission
shell@htc_m8wl:/ $ service call phone 13
Result: Parcel(
 0x00000000: ffffffff 00000050 0065004e 00740069 '....P...N.e.i.t.'
 0x00000010: 00650068 00200072 00730075 00720065 'h.e.r. .u.s.e.r.'
 0x00000020: 00320020 00300030 00200030 006f006e ' .2.0.0.0. .n.o.'
 0x00000030: 00200072 00750063 00720072 006e0065 'r. .c.u.r.r.e.n.'
 0x00000040: 00200074 00720070 0063006f 00730065 't. .p.r.o.c.e.s.'
 0x00000050: 00200073 00610068 00200073 006e0061 's. .h.a.s. .a.n.'
 0x00000060: 00720064 0069006f 002e0064 00650070 'd.r.o.i.d...p.e.'
 0x00000070: 006d0072 00730069 00690073 006e006f 'r.m.i.s.s.i.o.n.'
 0x00000080: 004d002e 0044004f 00460049 005f0059 '..M.O.D.I.F.Y._.'
 0x00000090: 00480050 004e004f 005f0045 00540053 'P.H.O.N.E._.S.T.'
 0x000000a0: 00540041 002e0045 00000000 'A.T.E....... ')

246 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

2. The Binder

The discussion so far has mentioned the Binder several times, but kept it a very high level
overview. Indeed, at a high level, suffice it to consider the Binder as a special type of a file
descriptor, which - through a dedicated kernel driver - is connected to the service. This is also how
Linux sees it, when the process is viewed through the /proc/pid/fd directory. Virtually every process
in the system (With the exception of a few native processes) opens a handle to /dev/binder.

Much of Binder's inner workings, however, are shrouded in darkness - probably because, for
most developers, ignorance is bliss. For those who want to know the details, there is, after all,
always the source. For the scope of this work, however, it's beneficial to elucidate some of these
dark corners and provide a closer view of Binder, explaining its functionality without going into the
(not so well documented) source.

2.1. A little history

The Android Binder mechanism traces its root back to the Binder of another mobile operating
system, BeOS. Binder served as the underlying support interconnecting BeOS's rich set of
frameworks. Once heralded as the "next generation operating system", BeOS never gained much
traction save for a few fans, and was eventually acquired by Palm. If the name doesn't ring a bell,
that's fine - Palm Pilots were all the rage back at the end of the last millenium, catapulting 3COM to
great heights before Palm was split off and spiraled back to earth. Palm was eventually acquired by
HP, and its OS served as the basis for "WebOS", another venture that fell far short of its promise.

Binder, however, survived. Besides being ported to PalmOS (and integrated into their Cobalt
architecture), it was also ported to other operating systems - including, of course, Linux. The Linux
port was open sourced (at http://openbinder.org/, and though the website seems to have died since,
some mirrors1 survived). The original developers left Palm to join Android, and brought Binder with
them. Chief amongst them was Dianne Hackborn, a well renowned developer and still one of the
major figures driving Android today. An interview she gave to OSNews2 back in 2006 explained the
fundamentals of OpenBinder.

Android's implementation of Binder is more specific than OpenBinder, and - just like as originally
intended in BeOS - serves as the fulcrum for all of its frameworks.

2.2. So, what, exactly, is Binder?

Binder is a Remote Procedure Call mechanism, allowing applications to communicate
programmatically, but without having to worry about how to send and receive messages. From the
application's perspective - server or client - all it needs to do is either call a method (client) or
provide a method (service). When the client calls the method, the corresponding method is
magically invoked in the service, with all the "details" handled transparently by Binder. These
"minutiae" include:

Locating the service process: In most cases, the client and the service are two different
processes (system_server notwithstanding). Binder needs to locate the service process for
the client, so as to be able to deliver the message. This "location service" (also known as
"endpoint mapping") is technically handled by servicemanager, as explained previously,
but the servicemanager is only responsible for maintaining the service directory, mapping
an interface name to a Binder handle. The "handle" is an opaque identifier, which was given
to the servicemanager by Binder, and which only Binder knows the "true" meaning of -
that is, the underlying PID wherein the service is located.

Delivering the message: As we've seen, AIDL is used to generate the code which takes
the parameters of the called method and serializes them (i.e. packs them into a structure in
memory), or deserializes them (unpacks the structure back to individual parameters). The
passing of the serialized structure from one process to another, however, is handled by Binder
itself. Clients call the BINDER_WRITE_READ ioctl(2), which sends the message over
Binder, and blocks until a reply is returned (hence, the code - first write, then read).

Delivering objects: The service handles mentioned previously are one type of an object
Binder can pass, but so are file descriptors (just like UNIX Domain sockets). Passing around
descriptors is an especially important feature, as it allows a trusted process (such as
system_server) to natively open a device or socket for an untrusted process (such as a
user app) - assuming the untrusted process has the required permission (as specified in the
App's manifest).

247Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

http://openbinder.org/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://www.osnews.com/story/13674/Introduction_to_OpenBinder_and_Interview_with_Dianne_Hackborn
file:///Users/morpheus/Documents/Android/Book/Volume%20I/all.html%23ipcrpc

Supporting credentials: Inter process communication naturally has significant security
aspects. A recipient of a message has to be able to verify the identity of the sender, so as not
to be tricked into compromising overall system security. Binder is aware of its users'
credentials - PID and UID - and securely embeds them in messages, so peers can operate
with a reasonable level of security.

Death notifications: When a Binder object or service dies (e.g. its process gets killed, the
object is freed or the service is terminated), the Binder driver is able to detect this, and
inform whomever has expressed interest - service peers or object holders - of the event via a
"death notification" (informally, an "Obituary"). This notification enables the interested party
to handle this condition, for example by retrying the connection or propagating an error.

2.3. Using Binder

Binder is used in all applications, whether or not the developers themselves realize it. The code
involved in binder operates on many levels, as shown in Figure 9/2-1:

Figure 9/2-1: Message flow between client and server using Binder

All communication with the driver is performed through a single system call - ioctl(2) - with
a set of BINDER_* codes. Chief amongst these is BINDER_WRITE_READ, which is called thus to
emphasize the transactional nature of the facility: The caller sets both write and read buffers
together, and subjects them to the driver, by which they will be consumed and populated
(respectively). The write buffer to the driver consists of outgoing BC_* command codes. Similarly,
the read buffer is filled with BR_* requests. The commands and replies mostly match eachother, so
that a client's BC_TRANSACTION is delivered to the server as a BR_TRANSACTION, and the
BC_REPLY from the server is returned as a BR_REPLY to the client.

In an effort to be true to the power user's view adopted in this work, this is as far as the
discussion will go - for now. More detail on the various levels - from the Java objects, through AIDL,
native, and kernel - can be found in Volume II.

248 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

2.4. 8.0+: The vndbinder and hwbinder

One of Project Treble's most notable changes was the re-structuring of Binder RPC into three
different "namespaces", to enforce strict isolation between classes of AOSP and non-AOSP code:

The /dev/binder node holds the "traditional" or "system" Binder namespace, which is reserved
for AOSP servers and third party clients only. This means that most system and developer
code continues to function in the same way, with no modification.

The /dev/vndbinder node is a new node for vendor code, allowing vendor daemons to interact
freely in and amongst themselves.

The /dev/hwbinder node is another new node, for "Binderized-HAL" servers, as shown earlier
in 1/3-4.

The system_server is, of course, able to use all three nodes, and thus can communicate with
vendor code. The communication, however, must be initiated from the AOSP side, as vendor code -
being barred from /dev/binder by SELinux policies - cannot initiate any contact with AOSP. This
greatly improves system security through tight compartmentalization.

2.5. Tracing Binder

The Binder driver can multiplex any number of service connections over the same file descriptor.
This means that a process will hold the character device descriptor irrespective of whether it is
connected to one service, or to many. Indeed, a process can hold this descriptor and not be
connected (yet) to any services at all. It follows, therefore, that there's no simple way to see exactly
which services a given handle is connected to. If the Binder debug functionality is enabled through
the Linux debugfs filesystem (/sys/kernel/debug/binder), however, Binder will emit debug data for
every process, with entries for both node it owns, as well those it references. Each process using
binder has a pseudo-file containing various statistics, and the node entries contained therein reveal
the PIDs connected on the other end.

The bindump tool, which you can find on the Book's companion website can process this data
and figure out who is connected to whom:

Output 9/2-2: Revealing binder endpoints using the bindump utility

Note, the Binder debug data has become restricted (thus requiring root) as of
around 7.1. Further - in some devices (e.g. XiaoMi Mi 11) /sys/kernel/debug may not

be mounted, leaving no way of figuring out Binder handles.

Get all services (copious output)
#
flame:/# /data/local/tmp/bindump users all
Service 'DockObserver' is node 14209
 Owner: 1169 (system_server)
 User: 604 (/system/bin/servicemanager)
Service 'SurfaceFlinger' is node 524
 User: 3618 (com.google.android.googlequicksearchbox:search)

 User: 1169 (system_server)
 User: 604 (/system/bin/servicemanager)
 Owner: 674 (/system/bin/surfaceflinger)
 ..
#
Use with 'vnd' or 'hw' for other Binder namespaces:
#
flame:/# /data/local/tmp/bindump vnd users android.hardware.citadel.ICitadeld
Service 'android.hardware.citadel.ICitadeld' is node 8
 User: 1408 (/vendor/bin/hw/android.hardware.biometrics.face@1.0-service.google)
 ...
 Owner: 610 (/vendor/bin/hw/citadeld)
 User: 606 (/vendor/bin/vndservicemanager)
#
Query single process handled (e.g. surfaceflinger)
#
flame:/# /data/local/tmp/bindump 674
Process 674 (/system/bin/surfaceflinger):
 Server: 'SurfaceFlinger' (node 524)
 Client: 'android.hardware.power.IPower/default' (node 110)

 Client: 'window' (node 11585)

249Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

http://newandroidbook.com/files/bindump.tar

manager

Interface: android.os.IServiceManager

Manager (Proxy): None

Implementation: ServiceManager.cpp

Servers: None (self)

Clients: Everyone

3. The servicemanager

By now we have seen that servicemanager forms the crux of Binder - without it, no client
can find no server. This is indeed reflected in the servicemanager.rc from /system/etc/init:

Listing 9/3-1: The servicemanager definition, from /system/etc/init/servicemanager.rc

What immediately stands out is just how many other key services are dependent on it, and
must be restarted with it, in the event of a crash. Further, servicemanager is designated as
critical, which means that init will aggressively attempt to restart it, or boot to recovery if it fails to
do so after four successive attempts.

If any application or system component needs to use any other service, it must first consult the
servicemanager to obtain a handle. Similarly, services cannot expect clients until they register
their presence with it. It is for this reason that, if the manager is restarted, so must all of its
dependents - after all, restarting implies the service directory must be rebuilt from scratch, and
services thus need to register. It likewise follows that, if servicemanager cannot operate, Inter-
Process Communication (IPC) cannot subsist. The servicemanager holds handles to all services
registered with it (so it can dole them out to requestors), and is therefore technically a client of all of
them (as can be seen in Output 9/2-2).

The servicemanager is a small, single-threaded binary, with a simple operation. Up until
Android 11, a call to binder_open() obtains the /dev/binder descriptor. This is followed by a call to
binder_become_context_manager(), to establishes its role as an endpoint locator. Thereafter,
the servicemanager enters an endless binder_loop, which blocks on the descriptor, until a
transaction (i.e. request from a client) occurs. This wakes the process, and calls its
svcmgr_handler() callback, which processes the transaction. The flow at this point is usually one
of two - addService or getService - and both paths are illustrated in Figure 9/3-2.

The service lookup must somehow be bootstrapped - in other words, the servicemanager
should be globally accessible, so that services can register with it, and clients can look them up. At
the native level, services and clients alike can call on defaultServiceManager() to get a handle
to the service manager (technically, to its interface, as a sp<IServiceManager>). The interface
(defined in IServiceManager.h with no official AIDL) exposes a simple set of four transaction request
codes - [GET/CHECK]_SERVICE (1,2), ADD_SERVICE (3) and LIST_SERVICES (4). Up until
Android 11 there is no API to remove a service. Services are automatically removed when their
processes die, because Binder can detect that, and send a death notification.

3.1. The android.os.IServiceManager Interface (Android 11)

Android 11's servicemanager implementation
has been rewritten in C++, and is considerably more
complex, although the general flow is still roughly the
same. The main() uses libbinder's
ProcessState singleton to initialize the device
handle, and adds itself as a service to an internal
ServiceManager object. It then calls
ProcessState's becomeContextManager()
method, and enters an endless Looper, with a
BinderCallback object adding the device file descriptor to the looper, and setting a
handleEvent callback.

service servicemanager /system/bin/servicemanager
 class core animation
 user system
 group system readproc
 critical
 onrestart restart healthd
 onrestart restart zygote
 onrestart restart audioserver
 onrestart restart media
 onrestart restart surfaceflinger
 onrestart restart inputflinger
 onrestart restart drm
 onrestart restart cameraserver
 onrestart restart keystore
 onrestart restart gatekeeperd
 onrestart restart thermalservice
 writepid /dev/cpuset/system-background/tasks
 shutdown critical

250 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

file:///Users/morpheus/Documents/Android/Book/Volume%20I/$ANDROID_SRC_ROOT/frameworks/native/libs/binder/aidl/android/os/IServiceManager.aidl
file:///Users/morpheus/Documents/Android/Book/Volume%20I/$ANDROID_SRC_ROOT/frameworks/native/cmds/servicemanager/ServiceManager.cpp

Figure 9/3-2: Registering and accessing Android fram
ew

ork services

251Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

The changes allow servicemanager to provide callbacks and nontifications to clients. The
ServiceManager object implements the android.os.IServiceManager interface. This
interface, although having been implicit up to that point, has been formally defined (in
frameworks/native/libs/binder/aidl/android/os/IServiceManager.aidl), and significantly extended: New
methods have been added past the traditional four, in order to support the notifications and client
callbacks, as well as service de-registration. The AIDL also supports init's interface directive (as
of 9.0), which allows the "dynamic" start of a service by servicemanager when a service lookup
fails, by having servicemanager set the ctl.interface_start property (see 8/2.2).

Table 9/3-3: methods exported by the android.os.IServiceManager interface

API Notes

1 getService(name, &outBinder)
Get a handle to the service specified by name

2 checkService(name, &outBinder)

3
addService(name, &binder

allowIsolated, dumpPriority)

Used by servers to register themselves with the service
manager. Servers can decide whether or not they want to

allow isolated (sandboxed) processes to connect

4
listServices(&dudmpPriority,

outList)
Return a vector (list) of all services. Not used by the

framework, but used by service list

5,6
[un]registerForNotifications

(name, &callback)
Register an IServiceCallback handler for name notifications

7 isDeclared(name, &outReturn) Return boolean outReturn if name is declared

8
registerClientCallback(name,

binder, &callback)
Register an IClientCallback handler for name notifications

9 tryUnregisterService(name, binder) Attempt to deregister binder handle for name

The programmatic APIs are wrapped by the framework class a.os.ServiceManagerNative,
which is further encapsulated in android.os.ServiceManager. Apps aren't expected to use this
directly, and instead call on Context.getSystemService() in order to look up system services,
and use intents for third party services. Either way, registration and lookup of services - both system
and third party - is performed over Binder, as shown in the previous figure.

Both registering and looking up services are considered security-sensitive operations: Apps (i.e.
processes with UID >= AID_APP) are explicitly disallowed from adding, and isolated apps ((UID in
AID_ISOLATED_[START/END] cannot lookup services unless those have explicitly requested
allowIsolated. A low-level selinux_check_access() call (wrapped in Android 11 by
Access::actionAllowedFromLookup() and before that by check_mac_perms()) queries the
SELinux policy. The policy differentiates between system (plat), vendor and product service and
hwservice contexts, based on files in …/etc/selinux. A discussion of SELinux is left for Volume III.

252 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Experiment: Using the service command to interface with service manager

Android provides the service command line utility as a simple interface for the service manager.
This simple utility also demonstrates how to use the programmatic APIs to query services. Using
service list you can display all registered services, as well as their published interfaces (discussed
later in this chapter), and using service check, see if a given service can be contacted. Output 9/3-4
shows the service lookup from service list, focusing on the first service handle returned:

Output 9/3-4: a jtrace of servicemanager responding to service check power

flame:/ $ /data/local/tmp/jtrace64 /system/bin/service list
Binder library initialization: Verify version and set thread pool
#
ioctl (3 </dev/binder>, BINDER_VERSION, 0x7fe5e55664 - 0x43a0ecfa00000000
ioctl (3 </dev/binder>, BINDER_SET_MAX_THREADS, 0x7fe5e55658 - 15)
..
#
PING_TRANSACTION (_PNG) to servicemanager, to ensure connectivity
#
ioctl (3 </dev/binder>, BINDER_WRITE_READ (0xc0306201):
 Request (68/68 bytes @0xb400007ccd835850):
 0x00: 0x40406300 BC_TRANSACTION on DefaultServiceManager, Code '_PNG'
 Method: ::PING_TRANSACTION
 Reply (76/76 bytes @0xb400007ccd8342f0):
 0x00: 0x720c BR_NOOP
 0x04: BR_TRANSACTION_COMPLETE (0x7206)
 0x08: 0x80407203 BR_REPLY: (0)

LIST_SERVICES(....) returns a buffer with count of services (200) and array of names
#
ioctl (3 </dev/binder>, BINDER_WRITE_READ (0xc0306201):
 Request (96/96 bytes @0xb400007ccd835850):
 0x00: 0x40086303 BC_FREE_BUFFER @7b9d6c3000
 0x0c: 0x40046304 BC_INCREFS for target 0x0
 0x14: 0x40046305 BC_ACQUIRE for target 0x0
 0x1c: 0x40406300 BC_TRANSACTION on DefaultServiceManager, Code 4
 Method: android.os.IServiceManager::LIST_SERVICES(15)

 Reply (76/76 bytes @0xb400007ccd8342f0):
 0x00: 0x720c BR_NOOP
 0x04: BR_TRANSACTION_COMPLETE (0x7206)
 0x08: 0x80407203 BR_REPLY: (200, "DockObserver", "SurfaceFlinger",) ...

writev (1 </dev/pts/1>,"Found 200 services:\n",1) = 20
..
#
Request handle for SurfaceFlinger, shown here because DockObserver has no interface)
#
ioctl (3 </dev/binder>, BINDER_WRITE_READ (0xc0306201):
 Request (96/96 bytes @0xb400007ccd835850):
 0x00: 0x40086303 BC_FREE_BUFFER @7b9d6c3000
 0x0c: BC_RELEASE for target 0x1
 0x14: 0x40046307 BC_DECREFS for target 0x1
 0x1c: 0x40406300 BC_TRANSACTION on DefaultServiceManager, Code 3
 Method: android.os.IServiceManager::CHECK_SERVICE(SurfaceFlinger)

 Reply (76/76 bytes @0xb400007ccd8342f0):
 0x00: 0x720c BR_NOOP
 0x04: BR_TRANSACTION_COMPLETE (0x7206)
 0x08: 0x80407203 BR_REPLY: (sh* to handle 1 PID 667, /system/bin/surfaceflinger)
#
INTERFACE_TRANSACTION (_NTF) to SurfaceFlinger process:
#
ioctl (3 </dev/binder>, BINDER_WRITE_READ (0xc0306201):
 Request (96/96 bytes @0xb400007ccd835850):
 0x00: 0x40046304 BC_INCREFS for target 0x1
 0x08: 0x40046305 BC_ACQUIRE for target 0x1
 0x10: 0x40086303 BC_FREE_BUFFER @7b9d6c3000
 0x1c: 0x40406300 BC_TRANSACTION on target 0x1, Code '_NTF'
 Method: ::INTERFACE_TRANSACTION

 Reply (76/76 bytes @0xb400007ccd8342f0):
 0x00: 0x720c BR_NOOP
 0x04: BR_TRANSACTION_COMPLETE (0x7206)
 0x08: 0x80407203 BR_REPLY: "android.ui.ISurfaceComposer"
writev (1 </dev/pts/1>,"1\tSurfaceFlinger: [android.ui.ISurfaceComposer]\n",1) = 48
1 SurfaceFlinger: [android.ui.ISurfaceComposer]

253Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

4. system_server

Android devices have dozens of services, and as more are added with each version, this number
approaches two hundred in Android 11 - before even considering vendor services. Fortunately, the
vast majority of framework services are simple enough that they do not require their own process,
and can instead run as threads. These threads, however, need a host process to run in - and that is
exactly what system_server provides. Note, however, some services do not have dedicated
threads. It is also important that not all the services are visible to applications: Some, like the
Installer are internal, and thus invisible both to apps as well as service list, as they cannot
be accessed over Binder, and are only visible through their objects in system_server's
namespace.

Similar to Windows' svchost.exe, the system_server provides little more than a shell - a
container process. The two can also be compared in the sense that svchost.exe loads services
through dynamically linked libraries (DLLs), whereas system_server loads Java classes. In
Android, however, this is even more important a function: Though the Dalvik VM is optimized for
sharing, running services alongside one another in the same VM provides an even greater savings in
resources. This does not come without a bit of risk, however, as a misbehaving service can thus
affect its siblings. For the most part, though, this isn't much of a concern, as only Android's system
services, and not those of the vendor or additional apps, are allowed to run inside system_server.

The system_server is not a native app: It is implemented mostly in Java, with some JNI calls.
The services it loads are similarly implemented in Java, though a great deal of them also rely on JNI
to escape the virtual machine and interact with hardware components. The zygote automatically
starts system_server when it itself is started by the /init.rc (q.v. Listing 8/6-1) with the --start-
system-server switch. The switch makes zygote invoke startSystemServer(), in which are
hardcoded the arguments - capabilities, group memberships (--setgroups), the "nice name"
(system_server), and the class to load - com.android.server.SystemServer.

The system_server does not execute with root privileges, but comes pretty close - UID:GID
of system:system, enhanced capabilities, and a host of secondary group memberships, which
enable it to access hardware devices and perform privileged operations.

4.1. Handling Services

Services are internally represented as com.android.server.SystemService instances.
The abstract class provides the service lifecycle methods:

onStart(): Signalling service start. The service is expected to perform whatever
initialization steps are necessary (e.g. register handlers, receivers, etc.), and publish
whichever interfaces other system components can use to interact with it. Interfaces are
primarily Binder endpoints (using publishBinderService(…), to register with the
servicemanager), but can also be local (using publishLocalService(), which adds
the service to the LocalServices static, visible only within system_server). This method
remains abstract, and so must be implemented when extending the class.

onBootPhase(phase): Signalling one of several "boot phases", allowing the service to
adapt its behavior based on the system's maturity, availability of other components, or
SafeMode, though the default implementation does nothing. The boot phases have numeric
values and are defined in increasing temporal order, shown in Table 9/4-1:

Table 9/4-1: The boot phases defined in c.a.server.SystemServiceManager

PHASE_.. Description
100 .._WAIT_FOR_DEFAULT_DISPLAY Earliest stage, display not ready

480 .._LOCK_SETTINGS_READY Lock settings service is available

500 .._SYSTEM_SERVICES_READY Core AOSP system services are ready and safe to use

520 .._DEVICE_SPECIFIC_SERVICES_READY Device/vendor specific services are ready and safe to use

550 .._ACTIVITY_MANAGER_READY ActivityManager is ready, intents/broadcasts safe to use

600 ..THIRD_PARTY_APPS_CAN_START Apps are available to both call and be called at this stage

1000 ..BOOT_COMPLETED Home application started, full UI available

254 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

file:///Users/morpheus/Documents/Android/Book/Volume%20I/Services.html%23f5-22

onUser[Starting/Stopping/Stopped/Switching/Unlocking](targetUser),
etc: allowing services to respond to the (human) user lifecycle, in multi-user environments
where different people use the same device. These are optional, and the service can choose
to override isUserSupported(targetUser) according to the types of users supported.

The SystemService objects are managed through a SystemServiceManager instance. The
object's most important method is startService(Class[Name]): When passed a className or
class extending com.android.server.SystemService, startService(…) uses reflection to
construct an instance of the service class, add to an internal mServices array, and then call the
instance's onStart() method. The SystemServiceManager is also the one to signal boot
phases (through StartBootPhase(…) method), and drive the service user callbacks.

4.2. Startup and Flow

For such an important fulcrum of the entire system, system_server has a rather simple flow.
Once it has forked off from zygote, the child process drops its privileges, and toggles the
capabilities as discussed above. It then proceeds to load the class, whose static main() creates
an instance and calls run(). Instantiation records start timestamps, and checks if the system is
being restarted through the sys.boot_completed property. Another important check is for
"factory mode" through FactoryTest.getMode(), which inspects the ro.factorytest
property, shown in Table 9/4-2. The run() method continues with the full initialization flow,
depicted in Figure 9/4-3 (opposite page).

Table 9/4-2: Factory test values ro.factorytest) and their impact on startup

value #define Implies

0 (default) FACTORY_TEST_OFF Normal startup.

1 FACTORY_TEST_HIGH_LEVEL

2 FACTORY_TEST_LOW_LEVEL No bluetooth, input, accessibility, lock settings

There are numerous system services to start, and system_server needs to instantiate them
one by one. Android 5.0 started refactoring this flow, and the effort was completed by 8.0: The flow
is significantly simplified by grouping services of similar classification into three "classes":

Bootstrap services: These include the PlatformCompat[Native], FileIntegrity,
Installer, DeviceIdentifiersPolicy, UriGrantsManager, ActivityManager,
DataLoaderManager, Incremental, PowerManager, ThermalManager,
RecoverySystem, Lights, Sidekick (Android Wear), DisplayManager,
PackageManager, OtaDexopt, UserManager, AttributeCache, OverlayManager,
and SensorPrivacy. Additionally, a check is performed if the device's /data partition is
encrypted or in the process of encryption - which affects startup by starting only apps
designated as "core apps", though these have no relation to the next class.

Core services: These include the SystemConfigService, BatteryService,
UsageStatsService, WebViewUpdateService (if FEATURE_WEBVIEW),
CachedDeviceStateService, BinderCallsStatsService, LooperStatsService,
RollBack, BugReport and GpuService.

"Other" services: basically, everything else. There are dozens of services in this class
(which the source admits is "a miscellaneous grab bag of stuff that has yet to be refactored
and organized"). Android Wear (detected through FEATURE_WATCH) adds about a half dozen
services here as well. It is during this stage that all boot phases in Table 9/4-1 are signalled.

Most services are started synchronously, but some services (such as the sensor services,
Android 11's Blob store and the HIDL services) are started asynchronously through the
SystemServerInitThreadPool. One way or another, once all services are started,
SystemServer's startup is complete. The main thread therefore enters its looper, which hopefully
loops indefinitely. We say "hopefully", since the looper is not expected to exit, and will throw a
runtime exception if it does. Internally, the loop blocks, polling its file descriptors (and in particular,
its Binder handle) for incoming messages. When messages arrive, they are dispatched to their
respective targets.

255Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Figure 9/4-3: The startup flow
 of s

y
s
t
e
m
_
s
e
r
v
e
r

(c
o
m
.
a
n
d
r
o
i
d
.
s
e
r
v
e
r
.
S
y
s
t
e
m
S
e
r
v
e
r
:
:
r
u
n
(
))

256 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Experiment: Unraveling the threads of system_server

Linux thread objects may be named when created. Naming a thread calls the underlying prctl(2) system
call - a little known but highly useful API which allows the renaming of threads and processes at the kernel level.
The name is then visible through the /proc filesystem in the status proc entry of the thread. The method is not
perfect, as it allows for only 16 characters in a name - but it sure beats rummaging through random thread
identifiers, trying to figure out which does what. system_server's threads are almost all created by Java,
whose Thread class gets a name argument, as do the Android HandlerThreads, ServiceThreads etc.

Using a basic command pipeline you can easily enumerate the threads, and get their individual names (this
works on any process, so as long as the for iterates over its task/ subdirectory, which contains a directory entry
for each thread). Binder threads and thread pools are omitted from this output, which has also been edited to
allow annotations and group together threads from the same subsystems. Note, that while TIDs aren't normally
predictable, a large part of system_server's are started incrementally, and so looking at the IDs can give you a
sense as to the system's framework startup (race conditions notwithstanding).

Output 9/4-4: Iterating through threads

flame:/proc/1169/task # grep Name */status | grep -v Binder | grep -v pool- | grep -v Thread-
#
Dalvik/ART maintenance threads
#
1176/status:Name: Signal Catcher
1177/status:Name: perfetto_hprof_
1178/status:Name: Jit thread pool
1179/status:Name: HeapTaskDaemon
1180/status:Name: ReferenceQueueD
1181/status:Name: FinalizerDaemon
1182/status:Name: FinalizerWatchd
#
ServiceThread subclasses (exc. watchdog)
#
1185/status:Name: android.fg # c.a.s.FgThread
1186/status:Name: android.ui # c.a.s.UiThread
1187/status:Name: android.io # c.a.s.IoThread
1188/status:Name: android.display # c.a.s.DisplayThread
1189/status:Name: android.anim # c.a.s.AnimationThread
1190/status:Name: android.anim.lf # c.a.s.wm.SurfaceAnimationThread
1191/status:Name: watchdog # c.a.s.Watchdog
1193/status:Name: android.bg # c.a.internal.os.BackgroundThread
#
Services begin with ActivityManager, spawning multiple workers and sub-threads
#
1194/status:Name: ActivityManager
1195/status:Name: ActivityManager
1196/status:Name: ActivityManager
1197/status:Name: ActivityManager
1199/status:Name: OomAdjuster # ActivityManager$OomAdjuster
1200/status:Name: batterystats-wo # a.s.am.BatteryExternalStatsWorker
1202/status:Name: FileObserver # FileObserver$Thread
1203/status:Name: CpuTracker # Created by ActivityManager
1567/status:Name: CachedAppOptimi # 11.0: c.a.s.am.CachedAppOptimizer
1707/status:Name: TaskSnapshotPer # c.a.s.wm.TaskSnapshotPersister
3078/status:Name: LazyTaskWriterT # c.a.s.wm.PersisterQueue
#
Miscellaneous
#
1207/status:Name: PowerManagerSer # Created by PowerManagerService
1208/status:Name: BatteryStats_wa # c.a.s.am.BatteryStatsService wakeupReason
1209/status:Name: PackageManager # PackageManager
1315/status:Name: PackageInstalle # Created by PackageManager
1528/status:Name: SensorEventAckR # f/n/s/sensorservice/SensorService.cpp
1530/status:Name: SensorService # f/n/s/sensorservice/SensorService.cpp
1531/status:Name: HealthServiceHw # c.a.s.BatteryService HandlerThread
1754/status:Name: HealthServiceHw # c.a.s.BatteryService HandlerThread (2)
1534/status:Name: RollbackPackage # c.a.s.rollback.RollbackPackageHealthObserver
1535/status:Name: RollbackManager # c.a.s.rollback.RollbackManagerServiceImpl
1541/status:Name: AccountManagerS # c.a.s.accounts.AccountManagerService.java
1550/status:Name: SettingsProvide # c.a.providers.settings.SettingsProvider
1581/status:Name: AlarmManager # c.a.s.AlarmManagerService
#
Input Flinger subsystem (q.v. II/9)
#
1599/status:Name: InputDispatcher # f/n/s/inputflinger/dispatcher/InputDispatcher.cpp
1600/status:Name: InputReader # f/n/s/inputflinger/reader/InputReader.cpp
2078/status:Name: InputClassifier # f/n/s/inputflinger/InputClassifier.cpp

257Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/am/BatteryExternalStatsWorker.java?q=batterystats-worker&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/am/CachedAppOptimizer.java;l=57?q=CachedAppOptimi&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:/frameworks/base/services/core/java/com/android/server/wm/TaskSnapshotPersister.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/wm/PersisterQueue.java?q=LazyTaskWriter

Experiment (cont.): Unraveling the threads of system_server
Output 9/4-4 (cont.): Iterating through threads

#
Connectivity and networking:
#
1673/status:Name: ConnectivitySer # Created by ConnectivityManager
1674/status:Name: roid.pacmanager # c.a.s.connectivity.PacManager
1692/status:Name: ConnectivityThr # a.net.ConnectivityThread

1675/status:Name: NsdService # c.a.s.NsdService (Neighbor Svcs Disc. state machine)
1676/status:Name: mDnsConnector # Created by NsdService
1602/status:Name: NetworkWatchlis # c.a.s.net.watchlist.NetworkWatchlistService
1858/status:Name: NetworkStatsObs # c.a.s.net.NEtworkStatsObservers
1642/status:Name: NetworkStats
1643/status:Name: NetworkPolicy # a.server.net.NetworkPolicyManagerService
1644/status:Name: tworkPolicy.uid # a.server.net.NetworkPolicyManagerService

1607/status:Name: hidl_ssvc_poll
1610/status:Name: AppIntegrityMan # 11.0 AppIntegrityManager
1616/status:Name: StorageManagerS # c.a.s.StorageManagerService
1631/status:Name: LockSettingsSer
#
WiFi subsystem threads (q.v. II/12)
#
1664/status:Name: AsyncChannelHan # c.a.s.wifi.WifiInjector
1665/status:Name: WifiHandlerThre # c.a.s.wifi.WifiInjector
1667/status:Name: WifiP2pService # c.a.s.wifi.WifiInjector
1668/status:Name: PasspointProvis # c.a.s.wifi.hotspot2.PasspointProvisioner
1672/status:Name: WifiScanningSer # c.a.s.wifi.scanner.WifiScanningService
1703/status:Name: wifiRttService # c.a.s.wifi.WifiInjector
1704/status:Name: wifiAwareServic # c.a.s.wifi.WifiInjector
1705/status:Name: EthernetService
1706/status:Name: WifiManagerThre # a.n.wifi.WifiFrameworkInitializer
3137/status:Name: RedirectListene # c.a.s.wifi.hotspot2.PasspointProvisioner
3148/status:Name: OsuServerHandle # c.a.s.wifi.hotspot2.OsuServerConnection
#
Notifications, etc.
#
1677/status:Name: ranker # c.a.s.notification.NotificationManagerService
1678/status:Name: notification-sq # c.a.s.notification.NotificationUsageStats
1679/status:Name: onProviders.ECP # c.a.s.notification.EventConditionProvider
1680/status:Name: DeviceStorageMo # DeviceStorageMonitorService handler thread
1681/status:Name: AS.SfxWorker # c.a.s.audio.SoundEffectsHelper
1683/status:Name: AudioService # Created by AudioService$AudioSystemThread
1684/status:Name: AudioDeviceBrok # c.a.s.audio.AudioDeviceBroker
1688/status:Name: UEventObserver # Kernel uevent observer (shared by many services)
1693/status:Name: backup # Created by BackupManagerService
1695/status:Name: BlobStore # 11.0 BlobStore
1696/status:Name: GraphicsStats-d # a.graphics.GraphicsStatsService (GraphicsStats-disk)
1698/status:Name: SessionRecordTh # c.a.s.media.MediaSessionService
1699/status:Name: SliceManagerSer # c.a.s.slice.SliceManagerService
1700/status:Name: CameraService_p # c.a.s.camera.CameraServiceProxy
1701/status:Name: StatsCompanionS
1711/status:Name: PhotonicModulat # c.a.s.display.DisplayPowerState$PhotonicModulator
1774/status:Name: SyncManager
1811/status:Name: UsbService host
1917/status:Name: EmergencyAfford # c.a.s.emergency.EmergencyAffordanceService
1933/status:Name: NetworkTimeUpda # NetworkTimeUpdateService's HandlerThread
2008/status:Name: CCodecWatchdog # f/av/media/codec2/sfplugin/CCodec.cpp
2010/status:Name: NDK MediaCodec_ # f/av/media/ndk/NdkMediaCodec.cpp
2338/status:Name: BluetoothRouteM
#
Telecom
#
2350/status:Name: AudioPortEventH # a.media.AudioPortEventHandler
2369/status:Name: uteStateMachine # c.a.s.telecom.CallAudioRouteStateMachine
2372/status:Name: CallAudioModeSt # c.a.s.telecom.CallAudioModeStateMachine
2373/status:Name: ConnectionSvrFo # c.a.s.telecom.ConnectionServiceFocusManager
2867/status:Name: AdbDebuggingMan # c.a.s.adb.AdbDebuggingManager
5131/status:Name: AsyncQueryWorke
5542/status:Name: GrallocUploadTh

258 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/net/ConnectivityThread.java;l=29?q=ConnectivityThr&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/NsdService.java;l=552?q=HandlerThread&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/net/NetworkStatsObservers.java;l=50?q=NetworkStatsObs&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/net/NetworkPolicyManagerService.java?q=NetworkPolicy&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/net/NetworkPolicyManagerService.java?q=NetworkPolicy&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/StorageManagerService.java;l=210?q=StorageManagerService&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Wifi/service/java/com/android/server/wifi/WifiInjector.java;l=90?q=AsyncChannelHan&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Wifi/service/java/com/android/server/wifi/scanner/WifiScanningService.java;l=32?q=WifiScanningSer&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Wifi/service/java/com/android/server/wifi/hotspot2/OsuServerConnection.java;l=82?q=OsuServerHandle&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/notification/NotificationManagerService.java?q=mRankingThread
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/notification/NotificationUsageStats.java;l=1135?q=notification-sq
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/notification/EventConditionProvider.java;l=53?q=onProviders.ECP&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/graphics/java/android/graphics/GraphicsStatsService.java?q=GraphicsStats-disk&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/media/MediaSessionService.java;l=122?q=SessionRecordTh&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/camera/CameraServiceProxy.java;l=63?q=CameraService_p&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/emergency/EmergencyAffordanceService.java;l=49?q=EmergencyAffor&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/av/media/codec2/sfplugin/CCodec.cpp;l=68?q=CCodecWatchdog&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/av/media/ndk/NdkMediaCodec.cpp;l=1?q=av/media/ndk/NdkMediaCodec.cpp&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/media/java/android/media/AudioPortEventHandler.java;l=36?q=AudioPortEventH&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:packages/services/Telecomm/src/com/android/server/telecom/CallAudioRouteStateMachine.java
https://cs.android.com/android/platform/superproject/+/master:packages/services/Telecomm/src/com/android/server/telecom/CallAudioModeStateMachine.java;l=32?q=CallAudioModeSt&sq=&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:packages/services/Telecomm/src/com/android/server/telecom/ConnectionServiceFocusManager.java;l=41?q=ConnectionSvrFo&ss=android/platform/superproject
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/adb/AdbDebuggingManager.java;l=108?q=AdbDebuggingMan&ss=android/platform/superproject

5. A bird's eye view of framework Services

AOSP defines well over a hundred services, with the number growing closer to 200 by Android
11. Vendor-added services can increase this even further. While some are designed for use by
applications, most are internal, and thus undocumented. Even the application-facing services,
however, have some undocumented APIs. It's no surprise, then, that a signficant portion of this work
needs to be devoted to providing a little bit more clarity as to their operation.

Android subdivides its services by package namespace. The following namespaces are used:

com.android.internal - is used, as the name implies, for internal services, with
subpackages for telephony, app and appwidget.

android.net - is used for the various Wi-Fi and connectivity related services (though not
telephony, as those are handled by com.android.telephony.

android.app - groups together services used for application support .

android.content - services loosely associated with Android content providers

android.os - services used for operating system support, such as the UserManager,
PowerManager and others.

android.media - services associated with audio/video presentation and management.

Some namespaces, such android.media, indeed contain any and every service associated
with their group. The classification gets blurry, however, with namespaces such as android.os,
android.app and android.content, wherein services are grouped with little apparent
connection. It's also not uncommon to see a service move in between packages from one Android
release to another.

The approach taken by this work, then, aims to tackles services a little bit differently. As shown
in Table 9/5-1 over the next several pages, services have been classified by functionality, rather than
namespace:

Table 9/5-1: Android Services, categorized by functionality

Category Service Name Handles

Application
(II/3)

activity Activity Manager (manages lifecycle)

activity_task Activity Task Manager

app_binding 10.0: Keep apps running

app_prediction Predict app/shortcut usage

app_integrity 11.0: Package install verification

appwidget Widgets

content Content provider sync, observers, etc.

content_capture
10.0: Content capture services

content_suggestions

launcherapps Application/Launcher interface

notification Notifications, Toasts etc

slice Application Slices

Application Debug

binder_call_stats Binder statisticss (II/7)

cacheinfo 11.0: Binder cache info

dbinfo SQLite database usage info

looper_stats Application looper statistics (II/3)

runtime Core Library Debug Info

259Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table 9/5-1: Android Services, categorized by functionality

Category Service Name Handles

Application Services
(II/4)

alarm Deferred execution

autofill Auto-fill input boxes

blob_store 11.0: Shared datasets blob manager

shortcut Shortcut/deep linking

backup Application Backup agents

clipboard Clipboard (cut/paste) services

jobscheduler Deferred job execution

print Print to local or network printer

search Search using registered activity

textclassification Classify text and context for suggestions

textservices Spell check

update_lock Acquire lock before a system update

Device Configuration &
Management

(Chapter 10)

user User management

account Account management

crossprofileapps Applications across profiles

device_config Device Configuration

settings User and device profile settings

system_config 11.0: Interface to etc/sysconfig/… files

Diagnostics
(Chapter 12)

bugreport dumpstate

dropbox Persistent log/blob store service

stats
Gather system-wide statistics

stats_companion

incident
9.0: Incident reporting

incident_companion

Graphics

(II/11)

SurfaceFlinger Surface compositor

window Window manager

display Display management

color_display Color display

gpu GPU driver details

graphicsstats Graphic statistics

gfxinfo Graphics information for dumpsys

Hardware
(Various)

DockObserver Detects device "docking" over USB

consumer_ir Infra Red blasters

vibrator Device vibrator ("buzz" when in silent mode) and
haptic feedbackexternal_vibrator_service

device_identifiers Get device serial number and/or other identifiers

lights A11: Led/light management

serial Serial device enumeration and access proxy

sensorservice Sensors

sensor_privacy Enable/disable sensor privacy

nfc Near Field Connectivity. Owned by com.android.nfc

contexthub Context Hub Nano App interface

usb Universal Serial Bus interface

bluetooth_manager BlueTooth Management

Input
(II/9)

input_method Input Method Editor (IME) support

input Input Manager

inputflinger Combine multiple input sources

I/O
(Chapter 11)

iorapd I/O Read Ahead and Pin Daemon

pinner Pins important files in memory

260 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table 9/5-1 (cont.): Android Services, categorized by functionality

Category Service Name Handles

Location (II/12)

country_detector Detect country and locale

location Determine location from GPS, WiFi, Cell, etc

network_time_update_service Network time sync

time_detector Suggests time and time zone from manual,
network or telephony time sourcestime_zone_detector

Media

(II/9)

audio Audio Subsystem

media.camera
Camera Services

media.camera[.proxy]

media_projection Project media (Miracast, virtual displays, etc.)

media_router Route media to different display/speakers

media_session Manage media sessions

midi Musical Instrument Digital Interface (MIDI)

soundtrigger[_middleware] Sound Trigger ("Ok Google")

media.aaudio Native audio stream control/notifications

media.audio_policy Audio Policy (volume, effects, etc)

media.extractor Codec extraction

media.resource_manager
Manage & monitor client media resources

media_resource_monitor

media.player Media recording/playing sevicesw

media.audio_flinger Combines several audio-streams together

media.metrics Maintain audio/video metrics

drm.drmManager
Digital Rights management

media.drm

Mobile Device
Management (III)

device_policy Device Policy Management (Admin apps)

restrictions 11.0: Obtain package restrictions from provider

Networking (II/11)

network_stack Network stack monitoring

netd_listener Owned by /system/bin/netde

connmetrics IP connectivity metrics/events

servicediscovery Neighbor Service Discovery (mDNS)

connectivity Query, monitor and change network state

ethernet Ethernet (wired) interface management

netpolicy Network policy restrictions/control

netstats Network Statistics

network_score Network score evaluator

dnsresolver Domain Name Server resolver service

ipsec IPSec encryption/authentication

network_management Network Management

network_watchlist Network traffic watchlist

netd Network Daemon

wifip2p WiFi Peer-to-Peer Management

wifiaware WiFi Aware (discovery/peer-to-peer data
connections)

wifirtt 802.11mc WiFi Round Trip Time

wifiscanner Network scanning

wifi General WiFi services

wifinl80211 11.0: Wificond (Wi-Fi subsystem manamagent)

tethering 11.0: Tether controller

261Chapter 9 - The Framework Service Architecture

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table 9/5-1 (cont.): Android Services, categorized by functionality

Category Service Name Handles

Process/Thread
(Chapter 11)

cpuinfo Process CPU utilization statistics

meminfo Memory utilization information

processinfo Process information

procstats Process statistics

scheduling_policy Thread scheduling

Recovery, Updates & Imaging
(Chapter 6)

gsiservice 10.0: Generic System Image (GSI) service

dynamic_system 11.0: Dynamic System Update (DSU)

update_engine ChromeOS A/B updater

system_update Retrieve/set system update info

recovery Recovery

webviewupdate WebView component independent update

Packages
(II/2)

installd Install/remove packages

package[_native] The Package Manager

overlay Runtime Resource Overlay (RRO)

idmap Resource ID/overlay package mapper

otadexopt Perform DEX→ART conversion after OTA

rollback Package rollback

platform_compat[_native] 11.0: SDKVersion compatibility settings

usagestats Package usage statistics

Power Mgmt
(Chapter 13)

power Wake locks, power mgmt

batterystats Battery statistics

batteryproperties Battery Health

battery Battery services

suspend_control Device suspend state

deviceidle Doze

thermalservice Thermal management (prevents overheating)

hardware_properties Temperature, CPU usage and fan speeds

Storage
(Chapter 5)

mount StorageManager

diskstats Disk usage statistics

storaged[_pri] Storage Management Daemon

storagestats Storage statistics

devicestoragemonitor Low disk space notifications

apexservice Android Pony EXpress daemon

vold The Volume Daemon

Security - Key storage
(III)

a.security.keystore System keystore, Java API compatible

gatekeeper Security token issuance authority

Security - Authentication
(III)

auth 11.0: Authentication service

biometric Biometric authentication

face "Face ID" Authentication

fingerprint Fingerprint authentication

Security - Authorization
(III)

appops Application operation permissions

permission Dalvik permission enforcement

permissionmgr 11.0: Perm. grant, revocation, white-listing,
etc.

role Package roles

uri_grants Manages package permissions to URIs

262 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table 9/5-1 (cont.): Android Services, categorized by functionality

Note, that even with this many services, the table may be incomplete as vendors and ODMs

often add additional services into the main service namespace. Further, the categorization above is

far from perfect (as is evident by the "miscellaneous" category). It does, however, enable a divide-
and-conquer approach: The work's remaining chapters try to follow along those lines. Each category

and its services are detailed in a chapter or section (with exceptions made for media, wherein audio

and graphics are treated separately, and security).

5.1. LocalServices

As previously noted, services in system_server usually use publishBinderpublish() to
expose themselves to clients system-wide, but another option is to use publishLocalService().
This adds the service class to the LocalServices class, which holds the class references internally.
The LocalServices are visible only within system_server, and thus any service calls are
carried out through method calls in the same process, by obtaining the object reference from the
LocalServices class, and then invoking the method.

Table 9/5-2 lists the LocalServices registrations in Android 11. Some of these are merely
subsets of the Binder services discussed in Table 9/5-1, while others expose functionality deemed
private:

263Chapter 9 - The Framework Service Architecture

Category Service Name Handles

Security - Miscellaneous
(III)

sec_key_att_app_id_provider Provides info about apps with a given UID

lock_settings Lock screen settings

secure_element Owned by com.android.se

trust Certificate Trust management

file_integrity 11.0: File Integrity

android.security.identity 11.0: Identity Management

entropy Mixes /dev/random entropy

Telephony
(II/12)

phone Phone functions

isms SMS messaging

iphonesubinfo Phone related subscriber information

simphonebook On-SIM phone book and contact list

isub Subscriber information

telecom Telephony manager services

imms MMS messaging

emergency_affordance 11.0: emergency call functions

telephony.registry Telephony registry and notifications

[r]cs Rich Communicate Services (Messaging).

ions Opportunistic networking service

carrier_config Carrier settings configuration

euicc_card_controller eSIM services

econtroller Downloadable subscription metadata, etc

sip Session Initiation Protocol (VoIP) support

UI (II)

dreams a.service.dreams.IDreamManager

statusbar Statusbar/widget interface

uimode Night mode, Car mode, etc

wallpaper Wallpaper setting/scaling etc

voiceinteraction Voice interaction (Hey Google, etc)

accessibility Accessibility services

vrmanager 11.0:

OEM
(III)

oem_lock Interface with OEM locking

persistent_data_block Interface to persistent data partition

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

Table 9/5-2: The LocalServices internal to system_server

Service Purpose
com.android.server.AlarmManagerInternal As alarm

com.android.server.usage.AppStandbyInternal Track application idle state

android.attention.AttentionManagerInternal Tracks when user attention is on screen

android.view.autofill.AutofillManagerInternal As autofill

android.os.BatteryManagerInternal As battery

android.internal.os.CachedDeviceState.Readonly Caches device state changes

c.a.s.camera.CameraServiceProxy as media.camera.proxy

c.a.s.display.ColorDisplayServiceInternal As color_display

c.a.s.contentcapture.ContentCaptureManagerInternal As content_capture

com.android.server.pm.CrossProfileAppsInternal As crossprofileapps

com.android.server.DeviceIdleInternal As deviceidle

DeviceStorageMonitorInternal As devicestoragemonitor

android.server.display.DisplayManagerInternal As display

c.a.s.display.color.DisplayTransformManager Display color transformations

com.android.server.dreams.DreamManagerInternal As dreams

com.android.server.job.JobSchedulerInternal As jobscheduler

com.android.server.lights.LightsManager As lights

com.android.server.LooperStats Looper statistics (as looper_stats)

a.s.notification.NotificationManagerInternal as notification

OverlayManagerService Runtime Resource Overlay (as overlay)

com.android.server.people.PeopleServiceInternal Manage people and conversations for apps

com.android.server.PinnerService Pin important files in memory

com.android.server.power.PowerManagerInternal power local interfacce

com.android.server.timezone.RulesManagerService Time zone rules

com.android.server.soundtrigger.SoundTriggerInternal As sound_trigger

TwilightManager Twilight (evening) detection (timezone)

com.android.server.UiModeManagerInternal As uimode

com.android.server.usage.UsageStatsManagerInternal As usagestats

c.a.s.voiceinternaction.VoiceInteractionManagerInternal as voiceinteraction

com.android.server.vr.VrManagerInternal Virtual Reality Manager

264 Android Internals::The Power User's View

Free sample from "Android Internals" 2nd Ed, Vol 1. Come get the full book at http://NewAndroidBook.com!

